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19. Abstract (Continued)

-applied to investigate liquid moments, velocity field, and pressure field in
siL'.•ations of pure forcing as well as resonance vith inertial waves at
Reynolds numbers up to 2000. For the linearized problem, a simplified set of
equations has been developed thaL permits closed-form solutions for spatial

eigenfunctions and highly efficient solution by spectral methods.
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Surnmarv

Thcorctica+ aLid numcriciti studies werc conducted to analyze the flow in spinning and coning
liquid-filled payload cylinders and to provide efficient tools for estimating and calculating the
liquid moments as input data for flight simulations. Earlier analytical studies for cylinders of larpe
aspect ratio ver' extended to the nonlinear problem to provide estimates for all moments. This
perturbation analysis is currently used to investigate the influence of partial liquid fills, central
rods, and two-fluid fills on the moments. A new method was developed to obtain the moments
from volume integrals rather than surface integrals and thus increase the accuracy of the results at
lixed nunicrical approximation. An efficient spectral code has been developed for routine applica-
tion to solve the three-dimensional Navier-Stokes equations. Utility of this code for efficient flight
sirnulationn haý been demonstrated. The code has been applied to investigate liquid moments,
vclocity field, and pressure field in situations of pure forcing as well as resonance with inertial
waves; at Reynolds numbers up to 2000. For the linearized problem, a simplified set of equations
has been developed that permits closed-form solutions foz spatial cigenfunctions and highly
efficient solution by spectral methods.
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not constitute an official endorsement of any commercial products. This
report may not he cited for purposes of advertisement.

Reproduction of this dccument in whole or in part is prohibited
except with permission of the Conmmander, U.S. Army Chemical Research, Develop-
ment and Frniineering Center, AT.'-. SMCCR-SPS-T, Aberdeen Proving Ground,
Maryland 21010-5423. However, tlu Defense Technical Information Center and
the National Technical Information -2rvice are authorized to reproduce :he
document for U.S. Government purposes.
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TNTER[OR FLUID DYNAMICS
OF T,IOQI1fD-FTLLE) PROJECTILES

1. Research Objectives

The project "Interior Fluid Dynamics of Liquid-Filled Projectiles" under Contract
DAAA15-85-K-0012 of the Department of the Army, AMCCOM, was originally planned as a
threc-year effort with the working period 07/01/85 - 06/30/88 and Thorwald Herbert as principal
investigator. The working period was extended at no cost until 12/31/88.

A detailed description of the research objectives has been given in section 2.2 of the original
proposal. In summary, the research aimed at understanding the origin of the flight instability of
projectiles with liquid payloads and at estimating and accurately calculating the liquid-induced
moments to obtain the data necessary for the design of future projectiles. This effort was directly
related to the experimental studies conducted at CRDEC and to numerical studies performed at
BRL. In detail, the work under this contract was planned to extend our earlier analysis in three

directions:
(I) Fully exploit the potential of the linearized solution with regard to yaw moment, pitch

moment, and temperature effects on the viscosity. Extend the solution to unsteady (e.g.
spin-up) situations.

(2) Perform a perturbation analysis of the nonlinear effects that produce radial and azimuthal
velocity components and modify the axial component. Study the effect of the cylinder end
walls on the flow field and the pressure. Investigate the onset and nature of cellular motions
at higher Reynolds numbers.

(3) Develop a highly efficient computer code for calculating the steady flow field and iquid
moments on the basis of the Navier-Stokes equations. Implement spectral approximations in
all space variables. Extend the analysis to unsteady problems (spin-up, spin-down, yaw-angle
growth). Incorporate the flow computations into an existing six-degree-of-freedom code.
As will be discussed in the next section, most of these goals have been reached. Various

other results have been achieved that were not anticipated at initiation of this contract. The work
on unsteady aspects of the problem was initiated but not finished within the period of this con-
tract.

Owing to Th. Herbert's accepting a new position at The Ohio State University (OSU) begin-
ning with the academic year 1987/88 on October 1, 1987, only a part of the program was con-
ducted at the Virginia Polytechnic Institute and State University (VPI). A part of the remaining
funds was made available through a subcontract to The Ohio State University to continue the
recarch. The research equipment acquired within this contract remained at VPI. The lack of this
equipment required time-consuming modifications of our research codes and caused delays in the
rcstcarch program.

U



4

2. Research Achievements

After initiation of this contract, work was simultaneously conducted on all thrcc topics.
Rapid progress was made until summer 1987 in close cooperation of the principal investigator
with RihUt Li who worked as a postdoctoral associate. At this time, Dr. Li accepted a similar
position at the University of Arizona since the funds available at OSU were insufficient for his
remaining in the program. At OSU, M. Selmi continued Dr. Li's work after some training period.

Most of the results of our research have been reported in publications (see section 4) and
more detailed papers are in preparation. Therefore, we can restrict this report to a brief overview
of the achievements.

Our earlier analytical studies for cylinders of large aspect ratio (Herbert 1986) were extended
to the nonlinear problem by use of a perturbation method. The small expansion parameter is
E = 'tsinO. where "t = £iw/o, Q the nutation rate, o) the spin rate, and 0 the angle between the two .

axes of rotation. The solution up to second order is obtained in closed form, while the third-order
contributions are determined numerically. Higher-order terms are small such that good estimates
of all liquid moments can be obtained from the closed-form approximation. The effect of finite
aspect ratios has been evaluated by comparison with results of the spectral code (see below). This
evaluation and the comparison of flight simulations based on analytical and numerical results
shows that the estimates are conservative and therefore useful for preliminary design studies.
Recently, the analysis has been extended to obtain results for partially filled cylinders with an
axisyrnmctric void, for cylinders with a central rod, and for the case of two immiscible fluids of
different viscosities and densities separated by a cylindrical interface.

Various stu.dics have been performed to evaluate existing Navier-Stokes solvers (Vaughn ct
al. 1985a, Strikwerda & Nagel 1985). These efforts were kindly supported by M. Nusca, BRL,
who provided data for comparison and the latest version of the Sandia code. The previous codes
are primarily based on finite-difference approximations with relatively coarse grid and were
designed without insight into the nature of the fluid motion. As a result, these codes provide solu-
tions only for relatively small Reynolds numbers and have to compromise between numerical
approximation and computational expense. Guided by our analytical work, we have directed our
efforts towaid tailoring the Navier-Stokes code to the nature of the fluid motion and obtaining
more accurate moments from a given numerical approximation for the flow fields.

Previous numerical work determined the moments from surface integrals over normal
stresses and shear stresses which involve the pressure and velocity gradients at the boundary.
Hlowever, boundary quantities are obtained with numerical errors typically much larger than the
velocity in the interior. We have developed a method to determine the moments by integration
over the volume of the cylinder. This integration requires only the knowledge of the fundamental I
Fourier com[xment of the axial velocity and the mean (streaming) component of the azimuthal
velocity. The pressure and velocity gradients are eliminated from this formulation. In comparison
with the tradlitieal surface approach, the smoothing by integration in three space directions and

h1e use () wllapproxinatcd data provides moments of superior accuracy with the same original
ctta, i.e. with Owe same amount of computer time. The method is generic in 1,P. sense that it is
,wid r•ot o•r!,. 1f)r cyiinders but as well fOr arbitrary closed containers. Mot. .r, the method is
111t owl,:, uetCl lor purcly numerical work but especially for perturbation approaches that provide
the. I~r(!IInar (tl Eoriir compoxent of the axial velocity at first order and the mean component of

I ' /r1 . 22 v t second order.
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The design of the spectral code for solving the Navier-Stokcs equations was guided by
analytical studies, the anticipated use for flight simulations, and the desire to keep the code open
for extension to unsteady problems, The latter demand prevented the use of artificial (non-
physical) time dependence to obtain the steady solution, Since the structure of the equations
clearly exhibits the dominance of the linear terms at the usually small values of c, a good approxi-
mation for the solution can be obtained by solving the linear system. This solution is improved
by iteration to account for nonlinearity. Besides the linearization in F, a second type of lineariza-
tion can be made in the velocity deviation from rigid-body motion. A third type of lincarization is
about a known solution at neighboring parameters. While the second type is used in absence of
prior knowledge, the third type is especially suited for continuation of the solution and moment
calculations in flight simulations which are characterized by a slow variation of the parameter
along the trajectory.

The utility of the spectral code for fundamental studies of the fluid motion (Herbert & Li
1987) and its efficiency for flight simulations (Herbert 1988) has been verified. The flight simula-
tions were based on a slightly modified version of the code developed by Vaughn et al. (1985b).
More recent work was dedicated to the range of high Reynolds numbers and to the viscous effects
on the resonance with inertial waves. For sufficiently small c the spectral solutions of the non-
linear problem agree well with the results of Hall et al. (1987) obtained by spatial eigcnfunction
expansions of the linearized problem.

The cigenfunction expansions used by Hall, Sedney & Gerber (1987) require numerical
determination of cigenvalues and cigenfunctions from an eigenvalue problem for a system of ordi-
nary differential equations. We have developed an equivalent but much simpler set of equations
that permits closed-form solutions for the spatial eigenfunctions (Li & Herbert 1988) and thus
avoids the high computational expense for generating numerical solutions. The eigcnvalac,,, are
obtained as solutions of a transcendental equation. Our formulation of the problem cicarly reveals
the structure of the eigcnvalue spectrum and explains the empirical results of Hall et al. on the
grouping of the cigenfunctions. The eigcnvalues have been generated for Reynolds numbers as
high as 106 . The numerical problems of using modified Bessel functions of large complex argu-
mcnLs at these high Reynolds numbers are not yet fully overcome.

Besides solving the new formulation in terms of cigenfunction expansions, we -apply spectral
expansions in Chebyshev series. The otherwise two-step solution procedure (generation of func-
tions, solving for the expansion coefficients) reduces in this case to a single step. Although this
code has not yet matured for routine applications, experience in the range up to Reynolds numbers
of the order of 103 is very encouraging.

Various studies have been performed to adapt the existing analytical and numerical methods
tn the unsteady problem. These studies concentrate on more efficient solution of linear and
wcakly nonlinear algebraic systems with iterative methods.

With the work under this contract, we have deepened the understanding of the fluid motion
in li ii-filled cylinders. The analytical work provides estimates for the moments in various
cylindrical configurations, guidance for the design of numerical methods, and an improved basis
Ior calculation of the moments. Spectral codes for solving the linear and nonlinear problem have
hcm:n dcvelopc,: ind yenitied to officiently calculate the liquid moments up to Reynolds numbers of
the order of' 2-101. The spectral code for the linear problem will be further developed to overlap
woith the boundary-laver methods in the range of high Reynolds numl-ers.



3. Personnel

During the working period, the following personnel were partly supported under Contract
DAAAI 5-85-K-OO1 2:

Thorwald Herbert. Professor, Principal I nvcstig~aor
Rihua Li, Postdoctoral Associate
Rclja Zivojnovic, Graduate Student (M.S. level)
Stephen D. Greco. Graduate Student (Ph.D. level)
Mohamed Selmi, Graduate Student (Ph.D. level)
Charlotte R. Hawley, Research Specialist
Vincet Menta, Undergraduate Student
David Pierpont, Undergraduate Student

Rihua Li developed thc volume approach for the calculaticnt of the liquid moments and
implemented this mecthod into the numerical work. Li analyzed the problemns associated with
cornirs of the computational domain for spectral codes arid contributed both to the analytical and
numcrical aspects- of the research program. In 1987, Li developed the simplified formulation of
the linear problem and the closed-form solution for the cigenfunctions. Dr. Li is presently Pos.t-
doctoral Associate in the Department 3f Aemospace and Mechanical Engineering at the tUniversi1v
of Arizona.

R. Zivojnovic and S. Greco were involved in developing the perturbation approach and solv-
ing the- perturbation equations numcrically. Owing to the complexity of the problem, they
coopeu-ted only for a short time. in the program.

Mohamed Selmi has continued the work of Dr. Li at OSU. He developed codes for deter-
mining thecexpansion coefficienits of the linear solution in terms of eigenfurictions and for direct
solution of the linear system by spectral methods.

Charlotte Hawley was responsible for computer operations and software, project administra-
tion, and technical manuscripts. Since Dc~emhc-r 1987, she is Research Assistant at OSU and
continues her cooperation in the research program.

4. Publications ("Jote: See Appendices A-H)

Trhe following publications, reports, and commun~ications were prepared with support by con-
tract DAAA15-85-K-(XJ12:

(1j "Visualization of the Flow in a Spinning and Nutating Cylinder," by 'Th. Herbert anid D.
Pierpont, in: Proc- 1985 Scientific Conf. on Chemical Defense Research, Aberdeen Proving
Ground, Maryland, 1985. (Ed.) MI. Rausa, Report CRDC-SP-86007, pp. 989-994 (0986).

(2) "Analytical and Computational Studies of thc Fluid Motion in Liquid-Filledl Shells,'' by Tll.
Ilerbert, in: Tran.%_ Fourth Arm ' Conif. on Applied Mathematics and Computing, Ithaca, Nov
York, 1980. ARO Rceport 87-;, pp. 027-636 (1987).

(3) ''Nutncrical Study of [the Hlow in a Spinning and Nuiating Cylinder,"' by Ili. Herbert and R.
Li, AIAA Paper No. 87-1445 (1987).

(4) "A Spectral Navicr.Stokcs Solver for tlie Flow in a Spinning and Nutating Cylinder,'' by
I-i. IlerNbert, in. I'roc. 1980 Scientific Conf. on Chemnical Dcfunse Research, Ahcrdccn Prolv-

ing (ricr()nrn MarYland. 1980. (ILd.) 10. Rausa, Report CRI)C-SP1-S7(X5, pp). 455-46(0
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(1987).
(5) "Flight Simulation for Liquid-Filled Projectiles,"' by Th. Herbert, Proc. 1987 U.S. Army

CRDEC Scientific Ci),fcrcnce on Chemical Defense Research, Aberdeen Proving Ground,
Maryland (198S7). Report CRDC-SP-8801 3, pp. 377-385 (1988).

(6) "Computational Study of thc Flow in a Spinning anid Nutating Cylindcr," by Th. Herbert
and R. Li, AIAA J. (1988), under review.

(7.) "Symbolic Computations with Spectral Methods," by Th. Herbert, ASME, AMD-Vol. 97,
in Symbolic Computatuion in Fluid Mechanics and 11eat Tranvfer, pp. 25-32 (1988).

(8) "High-Rcvnolds-Number Flows in a Spinning and Nutating Cylinder," by Rihua Li and Th.
Herbert, in: Proc. 1988 Scientific Conf- on Chemical Defense Research, Aberdeen Proving
Ground, Maryland, 19S8. To appear.

The following paper', reporting results obtained under thc support by this contract arc in
prepa ration:

(9) ''P,_!1rbatiori Analysis of the How in a Spinning and Nutating Cylinder of Large Aspect
Ratio," by Th. Ilerhen and R. Li, Physics of Fluids.

(10) "Calculation of thle Liquid Moments in a Spinning and Nut~ating Cylinder,"' hy R. Li and
I'l. Hecrbert, J. Guidance, Control, andI Dynamics

(11) "'Spatial Eigenfuriction Expansion for the How in a Spinning and Nutating Cylinder,'' by R.
Li and Th. Hecrbert, J. Iluid Mech.

5. Technical Presentations

The following papers were presented at meetings, conferences and seminars:

(1) "On the Domain of Stable Taylor-Vortex Flow," by Th. Herbert and R. Li, Proc. Confer-
ence on Mathcmnatics Applied to Fluid Mechanics and Stability - Dedicated in Memory of
Richard C. DiPrima. Troy, Ncw York (Sept. 1985).

(2) "Zur Stabilit'~t axialsyrnmetrischer Taylor Wirbel," Institut rdr Aemodynamik und Gas-
dynamik, Universita~it Stuttgart (Oct. 1995).

(3) ''State Selection for Taylor-Vortex Flow,"' by R. Li and Th. Herbert, 22nd Annual Meeting
of tile Society of Engineering Science, Univcrsit~y Park, Pennsyivania (Oct. 1985).

(4) '"On thle Fluid Motion in Liquid-Filled Shells,'' Scientific Conference on Chemical Deense
Research, Aberdeen Proving Ground, Maryland (Nov. 199,5).

(5) "State Selection in Taylor-Vortex Flow," Th. Herbert and R. HI. Li, Meeting of the D)ivision
of Fluid Mechanics of thle Amcrican Physical Society, Tucson, Arizona (Nov. 1985).

(6) ''flu1id Motion in Liquid-Filled Shells,'' Fourth A -iny Conference on Applied Mlalh'natics
and CompuL1ngý, Ithaca, New York (May 1986).

(7) ''Anatomy of thle V iscou-i I-low in at Spinning anid Nutating Cylinder,'' Lockhcecd-Georgia,
Marietta, Georgi a ( Aug. I 996).

(8) "'A Spectral Navier-Stokes Solver for the H~ow in a Spinvit~g and N!vulating Cylinder,'' 1986
U.S. Anmy CJRUX' Sciciihei Confcrcnc . n Checmical Defense Research, Aberdeen Proving
Ground, Mairyland (Nov. 1986).



(9) "Spectral CC. ,atufn of the viscous Flow in a Rotating and Nutating Cylinder," by R. Li

and Th. Hc:'.. ., 39th Annual Meeting of the Division of Fluid Dynamics, American Physi-

cal Society, Columbus, Ohio (Nov. 1986).

(10) "Wavcnumbcr Selection in Taylor-Vortex Hlow," by Th. Herbert and R. Li, Fifth Taylor-

Vortex Flow Wori ing Party, Tempe, Arizona (March 1987).

(11) "Viscous Fluid Motion in a Spinning and Nutating Cylinder," by Th. Herbert, Department

of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Mas-

sachusctLs (April 1987).

(12) "Numerical Study of the Flow in a Spinrning and Nutating Cylinder," by Th. Herbert and R.
Li, AIAA 19th Fluid Dynamics, Plasma Dynamics and Laser Conference, Honolulu, Hawaii
dune 1987).

(13) "Computation ol the How in a Spinning and Nutating Cylinder," by Th. Herbert, Depart-

ment of Aeronautical and Astronautical Engineering, The Ohio State University, Columbus,

Ohio (Oct. 1987).

14) "flight Simulation for Liquid-Filled Projectiles," by Th. Herbert, 1987 U.S. Army CRDEC
Scientific Conference on Chemical Defense Research, Aberdeen Proving Ground, Maryland

(Nov. 1987).

(i5) "Analysis of Viscous Flows by Spectral Methods," by Th. Herbert, Seminars on Algorithms

for Supercomputing, Ohio Supcrcomputcr Center, Co!umbus, Ohio (September 1988).

t10) "tligh-Rcynolds Number Flows in a Spinning and Nutating Cylinder," by Th. Herbert,
Chemical Rcecarch Development Fngincering Center, Aberdeen Proving Ground. Maryland
(November 1988).
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Visualization of the Flow
in a Spinning and Nutating Cylinder

Thorwald Herbert

David Pierpont

Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

Abstract

In the framework of a feasibility study, we have designed a small model test fixture for visualization
of the flow in a spinning and nutating cylinder. We describe the apparatus and the visualization tech-
nique, and report some results. As the Reynolds number increases, we observe an axially almost uniform
flow that turns at the ends, the development of two elongated cells in the plane of the spin and nutation
axis, the formation of additional laminar cells, and ultimately unsteady and turbulent flow with a super-
posed large-scale cellular motion.

1. Introduction

It is well-known that spin-stabilized shells carrying liquid payloads can suffer dynamical instabiity.
For cylindrical cavities and low viscosity of the liquid, the instability due to basically inviscid inertial
waves is rather well understood'. The instability of certain shells like the XM%761, however, is dis-
tinguished in character by the rapid loss in spin rate. Experiments2 and subsequent field tests3 establish
that this flight instability is most pronounced for liquid fills of very high viscosity.

Theoretical analysis of a simple model of the internal flow' has provided some insight into the phy.si-
cal mechanisms of this instability, and rough information on flow velocity and despin inoment. IFor
sufficiently low Reynolds numbers, more detailed results for the velocity field have beer) obtained using
computational methods for steady flows6'e. The flow phenomena at higher Reynolds numbers, however, are
outsldf, the scope of these methods, and it is not even clear wbetb-r the steady approach is justified.

P'. -. us experiments at CRDC and BRL were carried out under full-scale conditions. These studies
concentrated largely on global properties such as the moments exerted by the internal fluid motion. The
vet most successful study of the field properties is Miller's observation of the void in a partially filled
cylinder 7 . This study shows ar. axisymmetric void at low Reynolds numbers, a characteristic wavy distor-
tion of the void at medium Rcynolds numbers and an irregular (probably unsteady) liquid-air interface at
high Reynolds number. Computational studies5 indicate a cellular structure of the flow at a Reynolds
number Re 45, where Re ý wa 2 /v is formed with the spin rate w, the cylinder radius a and the
kinemati: viscosity v. However, there is yet no link between numerical results and void observations. An
attempt to trace buoyant beads with a movie camera8 was very limited in revealing details of the velo-
city field. The limitations are due to distortion of the tracer path in the multi-media optical path involv-
ing curved surfaces, and to inevitable minute density differences in combination with high accelerations.
Mi'ller8 used photochromic dye excited Ly a high-power pulsed laser in order to generate ..A r ; .

city profiles. Lighting problems in recording the pictures by a high-speed movie camera forced a reduc-
tion of t,} time scale, i.e. operation of the test fixture at lower spin rate, nutation rate, and kineinalr J
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viscosity. Qualitative pictures of the small azimuthal velocity have been obtained. The efforts to provide
more detailed daLa have been discontinued, however, due to continuing lighting problems, and .li ,,dveise

off-design conditions at further reduced time scales.

In earlier work 9, we have proposed a drastic reduction of length and time scales for experimental
studies, exploiting the principles of dynamical similarity. Following these considerations, we have designed
and built a low-cost test fixture for flow visualiza'ion. In our qualitative approach, the length scale is
reduced to 1/5. the time scale to 1/10, thus reducing moments by more than five orders of magnitude and
velocities to 1/ 50. In spite of improvising and compromising in the interest of saving time and money, we
!lave observed a wealth of phenomena from laminar, dominantly unidirectional flow through various
stages oi cellular motions to turbulent. motions with a superposed cellular structure.

In the following we describe the principles underlying the design, the test fixture, the visualizatomn
techpiqu-, •nrid some of our observations.

2. Dimensional Analysis

Evaluation of the experimental ati.t-mpts to visualize the fluid flow clearly reveals the extreme full-
scale conditions as evil. However, conclusive experiments can be conducted by exploiting the principles of
dynamical similarity and appropriate scaling laws P . Between the three reference quantities, radius a,

spin rate ý.-, and density p for length, time, and mass, respectively, the density of different fluids offers lit-
tle variability. However, length scale and time scale can be easily changed. For dynamical similarity, thle
lollowing dimensionless quantities must be kept fixed:

"I = c 'a aspect ratio
0 nutation angle
r f /w frequency
Re = pw.a2,/I Reynolds number

The nutation angle must remain the same in a scaled setup. Radius a and half-length c of the cylinder
niust be scaled by the same factor in order to keep the aspect ratio fixed. A second factor can be applied
to both spin rate w and nutation rate Q , in order to preserve the frequency. Keeping Re fixed requires
changing the kinematic viscosity v == ji/p by the same factor as w a2. Since the desired iendency is
toward smaller radii and spin rates, we require less viscous fluids than those used in the full-scale experi-
ments. Such fluids are easy to find.

It is obvious that the main thrust of an experiment may require specific optimum conditions. Flow
visualization requires low velocities, i.e. low values of wa . Measurements of moments require optimum
values of w2 a6. Minimizing the rate of change of temperature requiTes a minimum of 3a 2. A good sc I 1l1)
for flow visualization, therefore, may produce moments in a hardly measurable range.

3. The Test Fixture

The goal of our efforts was to show that a low-cost device (ý- $500) can be designed for flow visuali-
zation. Details had to be kept simple. Accuracy and convenience had to compromise. Various prelii-
inary concepts have been condensed into the design of a small apparatus that was built and explored as ;l
senior student project'0 . The result of these efforts is sho' n in figure 1. A one-inch inner diameter
cylinder of aspect ratio X = 4.3 is used. The cylinder is cut from a pyrex glass tube with the inner diam-
eter accurate within 1/5000 inch, but with varying wall thickness that affects the optical quality. The
cylinder is filled with mixtures of water and glycerin. The mixing ratio is used to vary viscosity. Oni top,
the cylinder is closed with a screwed-in plastic plug. A center hole allows access to the interior, especially
for removing air bubbles. The hole can be closed using a toothpick.

'Itie cylinder is glued to a drive plug and axis machined from a single piece of aluminum. The one-

sided support ahows easy (optical) access to the cylinder and permits using cylinders of different length.

One-sided support is affordable due to the moments being approximately five orders of magnitude smaller

than in the full-scale experiments. The axis is twice supported by ball bearings. The cylinder and shaft
aIle (Iriven via timing belts over exchangeable sets of pulleys by a <24V d.c. motor ,with sufficient turqIfle

I;. the range of 500- 5000 rpm. Motor and cy,'linder support are mounted to an aluminum frame thit can
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be inclined to the vertical axis by approximately 5, 10, 15 and 20* using different support holes and
Struts,

The horizontal support plate is machined to leave the center position free for access and is screwed
to a commercial record player (Garrard model 775). The plate can be offset, in order to align the liquid's
center of mass with the nutation axis. The record player provides nutation rates of 33, 15, and 78 rpm
The hollow axis is utilized to provide power to the spin motor. A nail with a smooth top and a brush fixed
to the turntable proved sufficient for transmitting a single voltage to the motor. The remaining corn-
ponents of the experiment are: a 1}eathkit. regulated power supply for the spin motor, a strobelight for
controlled pulsed lighting, and suitable flow tracers. The strobelight (General Radio Strobotac) with adju-
stable frequency is used for lighting as well as for measuring the spin rate of the cylinder.

4. Visualization

As flow tracers we use Afrnair 100 Silver Pearl, kindly donated by ENI Chemicals, Hawthorne, NY.
The material consists of very fine and shiny plastic platelets commercially used for cosmetic purposes.
Although thei" specific weight is different from that of the fluid, the low accelerations in the scale model
permit. practicrlly buoyant behavior of the platelets over considerable time.

At the slow time scale of the experiment, the fluid motion can be visually inspected while running
the apparatus. At high viscosities, the apparatus can also be suddenly stopped, with the flow tracers
"frozen" in the resting fluid. The platelets align with surfaces of constant shear. Therefore, by maniually
rotating the cylinder forth and back, the three-dimensional structure of the field can be inspected. This
crude observation is very helpful in developing the visualization technique. A detailed account of the
technique (appropriate particle density, pitfalls such as the history of particlc distribution and alignment)
has been given elsewhere".

Visualization of the frozen pattern can be essentially improved by using a light sheet passing
through the spin axis. Sheet lighting enhances the clarity of the flow pattern by showing only the
reflecting particles in a cut through the fluid. It reduces the undesirable reflections from the cylindrical
surfaces and also enables photographic recording of the flow structure while the apparatus is in operation.
A continuous light sheet is produced by a Spectra Physics model 120 (15 mW', helium-neon laser and a
cylinder lens. In order to avoid the need for accurately firing the camera (3o mm Pentax with 50 mm
lens) at a certain time, a cylindrical card board screen with a vertical slot and a 90 offset opening is fixed
to the circumference of the turntable. The shutter is manually opened and closed after the laser sheet of
light flashed 3 to 5 times thirough the slot.

5. Results

Some photographs taken with the apparatus in motion are shown in Figures 2-7. Thlc figurcs lhow
the flow pattern in the plane spanned by spin axis and nutation axis for 0 = 21.3", = 78 rpm and
different Reynolds numbers. Figure 2 shows that at Reynolds numbers as low as Re 20 a cellular pat-
tern develops with a pronounced symmetry about the axis as well as the midplane of the cylinder At the
present time it is unclear whether this patt-.rn ieflccts the instantaneous velocity field. Symmet,-y argi-
ments support viewing this pattern as origin_*ing from a nonlinear streaming term. As Re increases to
Re = 40 (Figure 3), the pattern and its symmet:v become more pronounced. At Re = 50 (Figure 4),
additional cells develop near the cylinder's midplane. Simultaneously, the symmetry with respect to the
cylinder axis is broken. A characteristic wavy distortion of the pattern near the axis develops that is
more clearly shown in Figure 5 at Re = 105. While the cells disappeared, virtually axisymmetric bhb-
bies occur at. the end plates. At Re ý 140 (Figure 6) these bubbles still persist. The bright, wavy line
near the axis has broken into segments that are very much aligned like the void in Miller's observations.
This pattern occurs only in the plane of spin axis and notation axis and is therefore considered to
represent the instantaneous velocity field. From the wealth of increasingly complex phenomena, Figuic 7
finally shows a visualization at high Re = 8000. The random distribution of the particles in the interior
most likely indicates turbulent flow. Nevertheless, the faint line near the axis resembles the characteristic
centerline distortion of Figure 6, indicating a superposed large scale structure. The presence of such a
large scale motion is also supported by the regular bands of particles deposited aý, the cylinder wall.
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Specification of accurate Reynolds numbers suffers from some uncertainty in monitoring and measur-
ing the wide range of viscosities for the hygroscopic water-glycerin mixtures exposed to uncontrolled ther-
mal conditions. To within this uncertmiity, however, the figures clearly reveal the cellular structure of the
flow and the changes of the structure as the Reynolds number increases. Perhaps the mosi. striking result
of this visual otudy of the flow st, ucture is the manifold of pattern at higher Reynolds numbers. A sys-

tematic analysis of these patterns has not been conducted. Although we found numerous opportunities for
improvements, the fea.sibility of flow visualization with relatively simple means by proper scaling has been
clearly demonstrated.
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Figure 1

"The miniature test fixture. Thic
inner radius of the cylinder is
a = 1.27 cm, the aspect ratio 4.3.

Figure 2 Figure 3

0 =21.3- 0 =21.3
O1 - 78 rpm 0 78 rpm
v =240 cSt v 240 cSt
w = 300 rpm w 600 rpm
Re =20 Re =40
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Figure 4 Figure 5

0 •21.3 0 =21.3
n - 78rpm 11 78 rpm
v =240 cSt v - 70 cSt
w 750 rpm w - 450 rpmn
Re = 50 Re = 105

Figure 6 Figure 7

0 -=21.3 0 -21,3"
2 = 78rpm f - 78 rpm
v, =70 cSt , = 0.95 cSt
w = 600 rpm w = 450 rpm
Re ý 140 Re = 8000
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ABSTRACT

Spin-stabilized projectiles with liquid payloads can experience a severe flight instability
characterized by a rapid yaw-angle growth and a simultaneous loss in spin rate. Labora-
tory experiments and field tests have shown that this instability originates from the
internal fluid motion in the range of small Reynolds numbers. In earlier work, we
developed a simple model of this flow based on linearized equations for the deviation
from solid-body rotation in an infinite cylinder. Here, we perform a perturbation
analysis in order to estimate the effect of nonlinear terms. Beyond a small correction of
the axial velocity component, we obtain radial and azimuthal components of the velocity
field in agreement with computational results for the core region of a finite-length
cylinder. The anaiytical results are exploited in the design of a spectral Navier-Stokes
solver for the steady motion in a finite cylinder. A first raw version of this spectral code
provides flow field and pressure distribution in a small fraction of the computer time
required by existing codes. We report some results and discuss possible refinements of
this code.

1. Introduction

It is well-known that spin-stabilized shells carrying liquid payloads can suffer a
dynamical instability which results in an increased coning (or yaw) angle and a simul-
taneous lows in spin rate. Laboratory experiments, computational results, and field tests
indicate that these phenomena arise from the coning-induced fluid motion in a limited
range of small Reynolds numbers. Although in special cases this instability has been
removed by trial and error, future design of reliable projectiles would profit from the
opportunity to estimate the liquid moments, and to include these moments in Right
simulators. The empirical ,iata base 11, 2] is sparse, however, and computational
methods in use [3, 4, 51 are r. . ,r demanding.

Our theoretical analysis of this problem serves on one hand to gain insight into the
anatomy of the flow phenomena and to support the ongoing experiments. On the other
hand, it promotes our efforts to develop a more efficient code for the numerical simula-
tion of the flow in a fini' container. While the analytical work aims at the velocity field
in the core region of a sufficiently long cylinder and on the viscous components of the
moments, in particular the viscous despin (negative roll) moment, the computational
iýork also captures the flow near the end walls and the pressure contributions to yaw
and pitch moments.

Our previoug work 161 shows that the deviation from solid body rotation is
governed by a small parameter ( = Q sinO/w involving the ntation rate f1, the nuta-
tion angle 0, and the spin rate w. The solution of the linearized equations consists of
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only an axial component of order O(E). This axial flow is the'dominating feature of the
fluid motion and produces a negative roll moment of order 0(f 2) owing to Coriolis
forces. Although these results are in reasonable agreement with experimental and com-
putational data, one may anticipate modifications of velocity field and roll moment if
nonlinear terms are taken into account. Estimates of these nonlinear effects are desired
in order to support previous results and to verify our conclusion that the three-
dimensional flow field in a finite-length cylinder is essentially given by the solution of
linearized momentum equations. In the following, we perform a straightforward pertur-
bation expansion for the nonlinear problem. We develop and solve the equations for the
flow in an infinitely long cylinder up to order 0(c3 ). A closed-form solution is given for
the radial and azimuthal velocity components at second order. The third-order equa-
tions are solved numerically.

The perturbation solution also provides estimates for the number of expansion
functions required for accurate spectral representation of the radial (r) and azimuthal
(6) structure of the solution. A spectral code appears as an attractive alternative to the
existing Navier-Stokes solvers. The finite-difference code developed at Sandia Labora-
tories 13, ill exploits Chorin's method of artificial compressibility. The steady solution at
11 X 24 X 21 grid points in r, 0, z-direction is obtained by integrating over typically
10'4 time steps, a task that requires 68 minutes of CPU time on an IBM 3090. The result
consists of 22,000 plus values for the velocity components v,, v#, tv, and the presure p
that can be utilized for a calculation of the moments. Strikwerda & Nagel [5] describe a
code using finite differences in radial and axial direction and pseudoepectral differencing
in the azimuthal direction. Nonuniform grids are introduced for increased resolution
near the walls. The difference equations are solved by an iterative method based on sue-
cessive over-relaxation. The computer time required is c-,mparable to that of the Sandia,
code (Nusca, BRL, personal communication). Although the Hative merits of tbe, two
codes, especially with respect to the captured range of Reynolds numbers are yet in the
dark, it seems well possible to beat both of these codes in two respects: computer time
and adaptability to the unsteady problem.

For a feasibility study, we have pursued a simple concept that is open to numerous
refinenint s. WVe use (Chebysh ev-Fourier-Chebyshev expansions in r, 4, z, respectively,
and con v'rt the linearized equations into a linear algebraic system for the expansion
coriicients. The solution of this system (or any other solution at neighboring parame-
ters) is used as initial approximation for iterative improvement by the modified Newton
method. The experience with this co,'e is encouraging with respect to accuracy,
efficiency, and robustness.

2. Governing Equations

\Ve consider thc motion of a fluid of density p and viscosity p in a cylinder of
radius ! and length 2c that rotates with the spin rate w about its axis of symmetry, the
z -axis. \e consider the motion with respect to the nutating coordinate system z, y, Iz
This system is obtained from the inertial system X. Y, Z by a rotation with the nuta- L

tion angle 0 about the axis Y y Therefore, z is in the Z, z-plane, and this plane
rotates about the Z-axis with the nutation rate Q . The two axes of rotation intersect
in the cfenter of mass of the cylinder. \Ve consider > 0. Q2 and 0 < 0 < 7r /2 as con-
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The fluid motion is governed by the Navier-Stokes equations written in tOw miitat-
ing coordinate system:

DtV,

Sv N.: 0. (1Ib)

V,, is the velocity measured in the nutating frame, P', the pressure, and r the position
vector. Equations (1) are subject to-- the no-slip and no-penetratioii condition.- at thle
cylinder walls.

It is convenient 161 to split the velocity and presisure fields according to

V. ý_ V. -' Vd,1. PýP (2)

where V, , 11) describe thle state of pure solid-body rotation, wliercas Vd , d represent
the deviation from solid-body rotation. The deviation Vd and the reduced pressure Pd
are ultimately r-sponsibkv for the observed flight instability.

The equations for Vd , I'd are written in terin.i of nondimensionti] quanltities v1 Pd
using a , w, and p for scaling length, time, and mass, respectively. Tile solution then
depends on four nondimensional parameters: aspect ratio X\- c ./a , fiutation angle 0,
frequency 7- == Q /W, and Reynolds number R pwa 2/ . The aspect ratio enters the
solution only through the boundary conditions at the end wvalls of tile cylinder. The
boundary conditions on Vd are homogeneous.

In cylindrical coordinates r , 6 z ,the equations for the nondimeiisional deviation
Velocity Vd =(v,, IV , v,) and pressure Pd take the form

() 1 9O V 0

rr ar r ao az

D 'tr - - 2(1 1 -r, )v, 2r,,v, (3 h)
r

19Pd 1 2 viy0

DI'v,, -+ u -4 2(1 7- rv,. 27r V, (3c)
r

I dPd I1

I)'v, ± 2 7~, v 0 270t~r -) 2r -T, +-D 1 1V , (3d)

V, - -- ! U 7

)r 2  r rar r2  d dz'

anid
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r, = -ecoso , ro = fsino , , = rcos , c rsinO . (4)

The primary effect of nutation is contained in the 0-periodic force term -2rr,=
2fr cos in the z-momentum equation (3d). For e = 0, equations (3) support the

trivial solution vf = 0, pd = 0. The system also supports the following symmetries:
V, (r, 0+r, ,- z) v, • (r, , z)( )

V 0(r , r, - z)- v (r , z (5b)

v,(r, +r, -z) = - v,(r,4, z) (5c)

pi(r, ¢+ir,- z) =pj(r, , z) (5d)

3. Perturbation analysis for an infinite cylinder

The steady flow in a relatively long cylinder (aspect ratio X > 4) at low Reynolds
number is expected to have a rather simple structure and to provide a roll moment pro-
portional to Re . In fact, the flow is expected to exhibit little axial variation over much
of the cylinder length. Previous work 161 has therefore relaxed the boundary conditions
at the end walls. In thisi way, one seeks the steady flow in a finite segment of an
infinitely long cylinder.

In the physical situations of interest, 4 = (ft/w) sin0 is a small parameter,
< 006. Consequently, it seems reasonable to pursue a straightforward perturbation

expansion in (. This provides vd in the form
oc

n =1

and similar expressions for Pd.

The development of general expressions for the expansion coefficients v(") from
equations (3) indicates an alternating pastern: Odd-order terms contain odd multiples of
0 and contribute only to the axial velocity v2, while even-order terms contain even mul-
tiples of the azimuthal coordinate 0 and contribute only to the radial velocity v, and
azimuthal velocity vr. Therefore,

(0,0, v,(")), n odd,
v --- (V,(n),V (n), 0), n even, (7)

and the components of v)(n take the form

r, (Un.(?) e•' 4 '(I-(T)e 2 m) (8a)

n/2
Vv., (r-) + F (vnm(r) e' + vnm(r m (sb)

rn =I

(n + ! )/02

= (w..(r) -'(m-1)* ± t,.nm(r) 'Qn1-1)*), (8c)

where the tilde denotes the complex conjugate. The aperiodic term in v,( ) is suppressed
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by the continuity equation. The r -dependent coefficient functions in eqs. (8) are
required to satisfy homogeneous boundary conditions at r = 1 and to be finite at the
axis r - 0 for a physically meaningful solution.

At the lowest order 0 (e), the z-independent force term in eq. (3d) can be balanced
only by an axial component of the deviation velocity. This component i3 the dominating
feature of the flow in a long cylinder. The axial velocity at order 0(i) can be found in
analytical form,

•.(r ) ---- ( cr(r)
wiI),( -) ,) (10)

where 11 is the modified Besael function, and o = (1 + i )(R / 2)1/2. This solution is
valid for arbitrary Reynolds number but may be unstable as R exceeds some critical
value. The properties of the resulting flow field are discussed by Herbert [61.

At higher order, it is convenient to eliminate the pressure for the periodic com-
ponents by using the vorticity form of eqs. (3). At order 0(c 2), compariscn of the equa-
tion for v w with the imaginary part of the equation for w 11 immediately shows that the
aperiodic component of the azimuthal velocity is

v(r ) -- - 2 Im(w1,(,)). (11)

This relation can be exploited to show that the despin moment of order 0 (f) due to
shear forces on the cylinder wal is identical with our former result.

The 4i-periodic components are governed by a coupled set of inhomogenecus
differential equations with variable coefficients. Essential simplification at the expense of
increasing the order of differentiation results from eliminating v2 1 by use of the con-
tinuity equation. With some effort, the radial velocity component of 0 (C2) can be found
in closed form,

b 21(4) = 1 ± A +C3 + C4 2+) +' f2 a + -) (12)

where a - 6r, -- (i- I)R 2, and JI, J 2, and Y2 are Bessel functions. The
coefficients c 1 , c2 , c 3, and c 4 can be determined numerically.

The velocity components at order 0((3) are of interest primarily since w31 provides
the first nonlinear correction to the despin moment. In view of the effort involved in
deriving the closed form solution for u21 and the ultimate need to determine the
coefficients in eq. (12) numerically, we decided to solve the differential equations for the
third-order cc:mponents by means of a spectral collocation method.

4. Results of the Perturbation Analysis

Detailed equi:tions, results, and graphs of the various functions at relevant Rey-
noldsa aumbern will be published elsewhere 171. Here we give only a summary of the main
re-ults. Tfhe, motion is governed by the axial component. wto at order 0(c). Of the
higher order terms, only the aperiodic term v20 is substantial. In the cylinders center
section, these terms are in goo(: agreeme-it with results obtained from the Sandia code,
and it, excellent agreement with our own computations. All the other terms are not only
of ordrr 0(1) but in fact less than unity, assuring rapid convergence of the perturbation

Appendix B 22



series. The contribution of w31 to the despin moment is negligible. The 0-periodic
terms oscillate about zero as r varies between 0 < r < 1. Accurate representation of
single higl:-order terms by radial Chebyshev series may require numerous expansion
functions For the total velocity field, however, the error in representing these terms is
of little importance. At Reynolds numbers in the range of maximum despin moment,
reasonably accurate approximations can be obtained with as few as five polynomials in
radial direction. In the azimuthal direction, the solution is governed by terms periodic in
0, and by the aperiodic term v20 . Fourier series with three or five modes, therefore, pro-
vide approximations of sufficient accuracy for practical purpose.

5. Spectral Approximations for a Finite-Length Cylinder

The results of the perturbation analysis suggest that a good approximation to the
flow in a finite cylinder can be obtained by solving the linearized version of equations (3).
Linearization can be performed in different ways. The first is a linearization in c, as in
the perturbation analysis. The resulting equations support strong symmetries. Beyond
equations (5), the solution satisfies

v (r , 0 +7r, z) = -Vd(r, &z) , (13a)
Pd (r ,O i, z ) = - d €r, .z . (13b)

These relations provide a useful check on the results of the spectral code. A second
linear system can be obtained by linearization in the components of vd. This lineariza-
tion retains coupling terms such as 2rv, in eq. (3b) which destroy the symmetries (13).
The second system can he considered a upecial case of a third linearization about some
known solution vý°), pd'0). The third procedure is very efficient if the solution is sought
for a densely spaced sequence of parameter combinations as in flight simulations. The
second system is equivalent with the third one for v P) - p_(0) - 0.

The algebraic form of the equations is obtained by use of spectral collocation. The
velocity components arc cxpressed in the form

K L MV UkE R'( ,(0 .( X (14)
k :! 1 =-1 m =1

with similar expressions for v,,' v,, and Pd. The azimuthal functions are

, -- cos '(1 - 1)4/2i for odd 1, F, 1  sin [1€/21 for even 1, where I 1 1,2, • L
and L is odd The azirnuthal collocation points are equidistant, Oj = 27r(I - 1)/L. If
no use of the symmetries (5) is made, the axial expansion functions are the Chebyshev
polynomials Zm Tm 1(z/X), m = 1, 2, . M. The collocation points are
z,,, .- cos { - 1)ri'mM - 1)1. In radial direction, even or odd Chebyshev polynomi-

als are used, depending on the quantity under consideration and the periodicity in .
The proper choice is dictated by the requirement of a unique value of all quantities on

the axis r = 0. For example, the axial velocity component must assume a unique value
iidependent of 0 as r -. 0. Therefore, even polynomials are to be used if i I while
odd 1polYioin iais are to be used if I > I. The radial collocation points are rk =

Cos i(k - 1)-r/'(2K - 1)!, k - 1, 2, K. Consequently, 0 < rk < 1, and no
difficulty can arise from points on the axis. The collocation points in radial and axial
direction are concentrated near the boundary such that high resolution in this region is
ohtaiii.d w% hili! add itional coordinate ti ;u:sfounatiuns.
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Our implementation of the spectral method uses precalculated and stored matrices
containing the values of the expansion functions and their derivatives at the collocation
points. It is a straightforward matter to convert the linear system of parti;,l differential
equations derived from eqs. (3) into an algebraic system of dimension N =- 4 K L M
for the coefficients uktn Vkjm wktm and Pkin for tv,' , , t, z , and pd, respectively. It is

not straightforward, however, to implement the homogeneous boundary conditions for
the velocities at the cylinder wall and the condition on the pressure that is only deter-
mined to within an additive constant. In principle, the boundary conditions are imple-
mented by replacing three of the four differential equations in the boundary points. The
question then is which equation should be retained and where the condition on the pres-
sure, e.g. Pd = 0, should be applied. Trial-and-error leads to numerous cases with ill-
determined matrices or zero determinant. In other cases, a correct solution for the velo-
city field is obtained, but the pressure contains a non-physical spurious term. With the
velocity field given, we attempted to calculate the pressure by solving a Poisson equation
with von Neumann boundary conditions, but we encountered the same difficulties.
Problems with calculating the pressure in closed domains with spectral methods are
well-known, e.g. 181. However, tile reports of negative results are rather unspecific, and
neither the origin nor methods for removal of this spurious term seem to be known.

We have therefore performed a detailed analysis of the flow in a square driven by
an internal force field. This simpler two-dimensional problem exhibits all characteristics
- including the spurious pressure term - of the original problem. Detailed results of this
study will be reported elsewhere 1,i9. The study reveals that the spurious term is associ-
ated with the corners of the domain. The term vanishes in all collocation point.i except
the corners, where it may assume arbitrary values The term caiu be suppressed by
retaining in the corners one of the momentum equations that contain the derivative of
the pressure in the direction of the boundary. In the cylinder problem, the z-
momentum must be retained in order to suppress even as well as odd spurious terms.
The condition on the pressure can be applied anywhere except in the corner points.

We solve the linear algebraic sysLem for the expansion coefficients with a special

subroutine based on Gauss elimination with partial pivoting. The 'mbroutine stores all
data required to solve the same system with a new right-hand side without repeating the
costly (0 (N 3) operations) reduction of the matrix to upper triangular form. Once the
solution is obtained, a new right-hand side is formed taking the nonlinear terms into
account and the system is solved again. Tbui6 procedure is iteratively repeated until
sufficient accuracy is obtained. The procedure is equivalent to the modified Newton
iteration (without updating the Jacobian in every step) and converges rapidly since the
nonlinear corrections to the velocity are snmall while the pressure appears linear in equa-
tions (3).

6. Results oi the Spectral Code

In the following, wNe present soine preliminary results of a test, ruin for RI 14..5,

0 20' r =7 0.1667. and X n7 4.368 which results in ( -- 0.057. The results are for

K 4. L A•- 5. and consequently 'vN :-. 400. l)ctailho cconvergenice tests will be

performed with later versions of the spectral code. Figurre I shows the axial and radial
velocity in the x, z-plane. Only the upper half, z > 0, of the cylinder is shown; the

lower half is governed by the syrnrm•tris (5). The velocity distribution at z = 0 agrees
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well with the results of the perturbation analysis and computations with the Sandia
code. Near the walls, the solution seems to be more realistic and more accurate than the

Sandia. results, The figure also verifies the existence of a predominantly axial flow over

most of the cylinder length, except within a region of the order of the radius near the

end wal;. Linear and nonlinear velocity diqtributions are hardly distinguishable. Clearly
visible is the turning of the flow near the end wall. The radial and azimuthal velocities
at z = 0.9X are shown in figure 2. The right tick mark indicates the z-direction,

0. At Re = 14.95, the maximum of the axial velocity occurs at 0 - 45 .

Pressure distributions in the x, z-plane are given in figures 3 and 4 with the heavy

lines indicating positive values. The pressure in figure 3 is obtained simultaneously with

Vd from equations linearized in (, and clearly shows the symmetry (13b). Figure 4 gives

the result from the nonlinear equations. It is interesting to note that a very similar pres-

sure field can be obtained by solving the Poisson equation for the pressure with the

linear velocity field. The inhomogeneous term in the Poisson equation is inherently non-

linear in the velocities. Figure 5 gives the pressure distribution across the cylinder near

the end wall at z =- 09X. Remarkable is the formation of a high-pressure region in the

corner near , -- 0, which produces a large moment about the y-axis. Looking at a series

cf plots like figures 4 and 5, one may wonder whether the details of the pressure varia-

tion near the cylinder wall can be resolved with a finite difference approximation with a

.,tep size of Ar - 0.1.

The azimuthal mean zclocity at z -- 0 is shown iia figurc 6. The shear exerted by

this component on the cylinder wall opposes the spinning motion and is the ultimate

cause of the despin moment. The axial and radial mean velocity field is given in figure

7. This streaming term exhibits a toroidal niotion Atretched over each half of the

cylinder. It is this mean velocity that causes the symmetric pattern in flow visualiza-

tions f101. Figure 8 shows the observed pattern of the flow Lt R • 30 which is typical

[or the range of low Reynolds numbers.

7. Discussion

The experience with the first version of the spectral code shows that high perfor-

mance can be achieved, The reported run with N - 400 requires 1.3 minutes CPU

time on an IBM 3090, 48 minutes on an Apo!lo DN300 desktop computer. The solution

i,, obtained in semi-analytical form with only N --- 400 numerical coefficients. This low

data volume is especially attractive for communication with remote supercomputers.

The code is very well suited for vectorization, since practically all CPU time is spent on

constructing and solving an algebraic system. However, the code demands larger

memory than other codes f3, 5. Since 64-bit a-ithmetic is highly recommended for spec-

tral mtvhods in general, and the algebraic fjystem requires N(N 1) words of storage,

the atrvc test requires 1.3 Mbyte of memory. Nowadays, the memory requirement

appears a:ceptable even if higher resolution is desired.

Finally, there are various ways to improve the performance and lessen the

demia ids. The first step is to exploit symmetry which reduces V by a factor of 1/2,

•-torag. ,. If'I. Maid tine by z- 1,:8. Second, thie so!ution process can be split into two

leve!s, the hirst. of which .:,l•.•,cui:lci (olly the velocity components while the pressure is

()btmii.d ;i ~l)titet.iiori v bY olving the l'oisson eulualion. After these changes, the above

14."t ful, iiiIlls' ' .h;,u I Iiiiie i.Iil M ('NS020:688 1 based desktop computer
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Alternatively, runs with higher resolution can be executed within a short time on super-
computers. One may also consider reducing the storage requirement by line iteration.
However, the ability to obtain a reasonably acurate solution by direct solution of the
(large) algebraic system bears valuable potential to answer the question whether the
steady solution is stable, and allows for analysis of unsteady motions. T'_e design of a
reliable code for the unsteady problem can take profit from the kowledge of the eigen-
value spectrum for small unsteady disturbances of the steady flow.
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Figure S. Contour plot of the pressure Figure 6. Vector plot of the mean velo-

field across the cylinder at z/ 0.9. city hield across the cylinder at z /X 0 .

.. .. . . . ....11 , . . . . .

II , z-ln
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Figure 7. Vcotour plot of the pressurel Figure 6. Vecttrepro of the fudmeain veto

city field in the z, z-plane for z > 0. low Reynolds numbers (R --. 30) in the
z, z-plane.
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A SPECTRAL NAVIER-STOKES SOLVER
FOR THE FLOW IN A SPINNING AND NUTATING CYLINDER
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ABSTRA CT

Artillery shells with liquid payloads may experience a severe flight instability owing to the viscous fluid
motion in the cylindrical payload container. Analytical studies of this fluid motion suggest that the
velocity field in the aeroballistic coordinate system can be obtained from a linearized system of equa-
tions, with a small correction for nonlinear terms. Moreover, the smooth solution of th Nlaver-Stokes
equations at the relevant low Reynolds numbers can be accurately approximated by relativ•ely few
terms of spectral expansions. We describe a spectral collocation method for calculating velocity and I
pressure field arid the associated moments for liquid-filled cylinders embedded in spinning and nutating
projectiles. The dczign goals are high efficiency, robustness, and the opportunity of extending the
method to unsteady problems. The method uses Chebyshev-Fourier-Chebyshev expansions in the
radial, azimuthal, and axial direction and exploits the symmetries of the problem. We present solutions
for the steady motion and compare with experimental data. We also evaluate the performance of our
code in comparison with other computer codes.

1. Introduction

It is well known that spin-stabilized shells carrying liquid payloads can suiffer a dynamical instabil-
ity which results in an increased nutation (or yaw) angle and a simultaneous loss in spin rate. Labora-
tory experiments, computational results, and field tests indicate that these phenomena arise from the
nutation-induced fluid motion in a certain range of small Reynolds numbers. Although in special cases
this instability has been overcome by trial and error, future design of reliable projectiles would profit
from the opportunity to calculate the liquid moments and to account for these moments in flight simu-
!Vtors. The empirica, data base 1,2 is sparse, however, and computational methods in use 3 4,5 are
rather dem anding.

In previous work, 6 we conducted a theoretical analysis which aimed at the origin of the viscous
despin (negative roll) moment. This analysis showed that the deviation from solid body' rotation is
govCrn.d Iwy a small parameter n2 sin0•w involving the nutation rate Q , the nutation angle. 0, and
ti he spin rate w. A solution of the linearized equations was developed for a finite-length .•egment of an
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Infinitely long cylinder, dilregarding the end walls of tile cylindler. Velocity field and tile viscous
components of the moments were obtained in closed form. The velocity field consists only of an axial
corn ponent of order 0(c) which is the dominating feature of the fluid motion and prodluces a negative
roll mnoment of order 0(t 2) ow%%in1g to Coriolis forces. Although these results arc in reasonable agree-
irtent, withi experimental and coinplutational data, one may anticipate modifications of velocity field and
roll moment if nonlinear term"TS are taken into account. Moreover, yaw and p~itch moments contain

:,':tilcontributions of the piesslire 'Ithat origin atc from thle tu rning of the flow net- the enCd walls.
The effect of non111le-arIty ~VL tded 7' l)v ,.-Ing p~ertu rbation expansions InI and was found to be
S Irril. di -'ie flow In a fi nite-lengtli cy linder, hiowever, can onlY be captu red by a computational
ap~proach.

The existing computer codes may serve for establishiing some basic results but arc too Inefficient
Mrid insuifficiently verified for routine applications. Our analytical Work suggests Lthe use of a code that
exploits (i) the near-liniarity of the governing equiations and (11) the smoothItness of thc soluition in the
relevant rang-~ cf Reynolds ni m hcr-i Thelirefore, we have p~ursuedl a simple concept that is open I.o

numerous refinements. WVe use ClevivForc-lebsive'pinsions in r , 0, z , respectively, and
convert the linealrized equations into a linear algebraic system for the e.,pansion coefficients. The solu-
tiori of this systeml (or any other soti tion at necigh boring paraineters) is used as Initial ap~proximation
fo: iterative im1provement by the modified Newton method. The feasibility of thlis approach ha-s been
(Icinorstrated 8 with a crude s5pectral approximation to thle solution. The version of the code reported
he(.re exploits the diametral syminirictry of the flow anld allowYs for higher renltition at modest CPU times.
T1his vei-sion can also be ad apted to a timne-accu rate anialysis of the unsteadv problem.

2. Governing Equations

'ýVe conisidler t~iie dev Iat.;or V d ,[d from solid-body rotationi In a iiu tatiiig coordinate sYstemi
7 y ,z where -Is the cylinder axis and i is coplanar wvimh the two axes of rotation. (For a detailed

discussion of the governing equations, see thle article by Hierbert. 6 ) All quantities are made nondlimen-
sionial us"ing a , ), and p for scaling length, time, and mnass, respectivclvy. The solution depends onl four
tiomidimnitsional parameters: a~pcct ratio r !,(I , nutation angle 0, frequency r = 0~/~ and Rey.

numbiler I? p..)a /JL, where 2c Is tile lengtlm of tile cylinder, p) is the density, and ji thle viscos.
ity of tile fluid. Thle mspect ratito ent ers the solu tioni on ly throuigh (lie boundary conditions at the end
wallk of the cylinder. Thle motion is, su bject to the tio5hif) and no-penetration conditions at the cylinder
Walls. Thlerefore, thme boundary conit~ iions onl the de . iation velocity. are homogeneous.

fin cylindrical coordinates r- z , the equations for the velocity components vd = (v, ,'0 v,,v
atid prea-ssiire pd take the form

fi(trv -4 4- 0 (a)
rdrr aJ6 dz

V~ 1N Vr '2(l- - )-+2-- --u - ±-Dr' - r (1b)

-4- v v 2 (1 4 7 v, 2- , -= I- -t-fJ) IVA -V--.- -+ (ic)
rrHr r

2 7. 2r-it - 2,r r f d)
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aG a 0 2 8 a50 + vr -+ + -V . D" - -- I-±(Z2r r 0 " Or- rOr r' ," "'

and

--COSO , si6 d ,. -- rcsO, - rsinO . (2)

The effect of nutation is comprised in the 6-periodic force term -- 2r r- 2(rcoso in t.h1 z-
momentum equation (1d). For c = 0, equations (1) support. the lrivial solution -Vd = 0, Pd - 0.
The system supports the following symmetries:

V, ( r, +7r -_) z ,,,(r, , , ) r,,€(r.6 . : , 6z t,o(r. .• (, 6,)'

v,(r, +7,, - z ) v: .(r .6. , Z 1) (r. • -, -- p,(r . . ). (3c.cl)

3. Spectral Approximations for a Finite-Length Cylinder

The results of the analytical work suggest that a good al)proNInmaiton to the, 10ow in a finite
cylinder can be obtained by solving linearized versions of equations (I). l~inearizat ion can he performed
in different ways. The first is a linearization in ,. Beyond eqs. (3). the resulting equalions support the
additional symmetries

vd(r ,0+7r, z) Vd(r d z) Pd (r , 0 _ý r ) Z .. p~d(r~d Z}.(I

These relations permit useful checks on the results of the sl)ectral code..- second linear sYstem can he
obtained by linearization in the components of vd. This linearization retains coupling terms such as
2r76v, in eq. (lb) which destroy the symmetries (-4). The second system can be considered a special case
with vp) = p_(0) = 0 of a third linearization about some known solution v 0), Pd(). This third pro-
cedure is very efficient if the solution is sought for a densely spaced sequpence of parameter combinations
as in flight simulations.

The algebraic form of the equations is obtained by use of spectral collocation. The velocity com-
ponents are expressed in the form

K £ A!v-,. - kE E .,, Rk(, r Ft(6 Z,,u,(- )()
k =1 i =1 m =1

with similar expressions for v , v ,. and Pd. The azimuthal functions are F, cos i(1 - 1)45/2] for odd
1, F, =-sin [1//21 for even 1, where l = 1, 2, -.. L , and L is odd. The azimuthal collocation
points are equidistant, 0, 27(I - 1)/L . The expansion functions in radial and axial direction
depend on the index I and may be different for the variables t:, , r, u. , and pd. They are combina-
tions of even or odd Chebyshev polynomials such that (i) the homogeneous boundary conditions are
implicitly satisfied, (ii) the symmetry conditions (3) are satisfied, and (iii) the limit values of the vari-
ables for r - 0 (i. e. the values on the axis) are independent of 0. The collocation points are r-
cos (2k - l)7r/4K1, k = 1,2, K, and z,,A/X cos 1(21n - 1),-/.IfJi. in = 1,2, M,, Con-
sequently, 0 < rk , and no points are located on the axis. Also, rk < 1. z,, < X, such that no points
are located on the surface. This choice prevents the occurrence of spurious pressure terms and avoids
the difficulties associated with corners and axis. The points are concentrated near the boundary such
that higher resolution in this region is obtained without additional coordinate stretching.

The spectral collocation method converts the linear system of partial differential equations derived
frorn eqs. (1) into an algebraic system of' dimension N =-- K *L -.I for the coefficien t.s ll.h,, "Um
wklm , and Pklm of v,, v , v. and Pd, respectively. The linear algebraic system for the expansion
coefficients is solved by Gauss eli min ation NOith partial pivoting. The slibroutine used retains all data
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required to solve the same system with a new right-hand side without repeating the costly reduction of
the matrix to upper triangular form. Once the solution is obtained, a new right-hand side is formed
taking the nonlinear terms into account and the system is iteratively solved until sufficient accuracy is
achieve(l. The procedure is equivalent to the mdified Newton iteration .(without -u.pdating the Jaco-
bian in every step) and converges rapidly since the nonlinear rorrections 6~o the velcoity are small while
the pressure appears linear in equations (1).

4. Results of the Spectral Code

In the following, we present some results for It -!1.95 -- 200. r ý--.0.1667. and X -1.368
which results in c = 0.057. The results are for h" -- .L .5. and consequently N = 500. Fig-
ure 1 shows the axial and radial velocite% in the planes 6 TV5 antd 13V . Only the upper half,
z > 0, of the cylinder is shown; the lower half is governed by the symmetries (3). The velocity distri ,
bution at z *- 0 agrees well with the restilt-s of the perturbation anaIlyss and computations with the
Sandia code. Near the end walls, the solution seems to be more realistic and more accurate titan the
Sandia results. Good resolution of the velocity gradients and pressure at the boundary is important for
accurate calculations of the momrents The lizure also verifies the existence of a predominantly axial
[low over most of the cylinder length, except within a region or the order of the radius near the end
wall. Linear and nonlinear velocity dIStributions are hardly distinguishable. Clearly visible is the turn-
ing of the flow near the end wall.

The pressure distribution in the plane 6 = 4.5 is shown in figure 2 with the heavy lines marking
positive values. Remarkable are the regions of high and low pressure in the corners near 6 - 45' and
0 2250 , respectively, which produce large pressure contributions to the moments about x-axis and
y -ax is.

The dominant components of velocity and pressure fields are azimuthally periodic with period 2v
The harmonics are small, indicating the small effect of nonlinearity. The only important nonlinear term
is the aperiodic mean flow. The axial and radial mean velocity field is given in figure 3. This streaming
term produces a toroidal mean motion near the end wall.

The despin moment about the z-axis is largely governed by the shear stress at the side wall
caused by the azimuthal mean velocity. This component shows little variation over about 90o% of the
cylinder length. This result explains the good agreement of our earlier analytical results for the despin
moment 6 with experimental and computational data. Besides the calculation of the moments frorn
local velocity gradients and pressures at the surface, we have also obtained these moments from volume
integrals involving the velocity only. This second method provides accurate values of the moments
from low-resolution spectral approximations that would be insufficient when using the surface values.
Reasonable accuracy of the moments can be obtained with K -- Al = 4. L 3. This approximation
has been used to obtain the data shown in figure 4 together with results of the Sandia code 4 and the
analytical results. 6 The region of maximtlm despin moment will be subject to further study with higher
resolu tion

5. Discussion

The finite-difference code developed at Sandia Laboratories 34 provides the steady solution at
11 X24 X 21 grid points in r. 6. z-direction by integrating over typically 104 to 8.104 time steps, a
task that requires 6 to ,t8 minutes CPU time on a Cray-IS. This requirement translates into 6 to 48
days on the MC6S010 based Apollo DN300 work station used for our studies. The result consists of
over 22,000 .alucs for velocities and pressure. Strikwerda & Nagel 5 briefly describe a code using finite
differences in radial and axial directions and psendospectral differencing in the azimuthal direction. 4
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Nonuniform grids are introduced for increased resolution near the walls. The dIifferecie equations are4
solved by an iterative method based on successive over- relaxation. T he cornputer time required is corn-
parable to that of the Sandia code (Nusca, BRL, personal communication). The relative merits of the
two codes, espcc-:. !lv with respect to the capturedI range of Reynoldls numiber,- are yet, concealed.

True experience with thc present. version of the spectral code shows that high performantce can be
achieved. TIhe reported run with N = 500 requires abouit :3 hours on an .kpollo DN-300 work station.'Thle solution is obtained in semni-analytical form with only',Y 500 numerical coefficients. This low
data, voliume 'is very attractive for communication with remote supercoinputcers. The codle i-, well stilted
for vectorization, since practically :ull CP'U time is -spent oil construcimlg and solving :tnf -.lgebraic sys-
tern. The codc demands larger memory than other codes hecatuisc i-I-Ibit art lumfiet IC is highly recom-
mended for spectral methods in general, and the algebraic systemu requ ires N (N A! I words of storage.
Nowadays, this memory requirement appears accep~tab~le even if higher resolution Is desired. C'alcula-~
tion of the moments for figure I (N =192) requires less than 12 minutes per point.

Finally, there are still ways to improve the performance. The --olution process cait he split intoj
two levels, the( fi rst. of which cahculntes onlyv the velocity component,; from vorticitv equat iouswile the
pressure Is obtained a, posteriori by solving the Poisson equation. F-or calculating the mloments by
volume integrals, only the first step is required. We exp-ect that the ne~xt version of our code will pro-
vidJe accurate solutions for the moments in less than I minute on an N1C680r20,'8$81 based work sta-
tion and can be, tsed as an efficient suibroutine in Rlight, simulators.
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ABSTRACT projectiles would take profit from the opportunity to

Artillery shells with liquid payloads may experience a calculate the liquid moments and to account for

severe flight instability owing to the moments these moments in flight simulators. The empirical

exerted by the viscous fluid motion in the cylindrical data base 2 is sparse, however, and computational

payload container. Incorporation of these moments methods in use 3,4,5,8 are rather demanding. An

into flight simulators as a routine design tool requires evaluation and verification of the codes by Vaughn et

a highly efficient code for solving the Navier-Stokes al. 4 and Strikwerda & Nagel 5 is currently conducted

equations. We describe a spectral collocation method at BRL. 7 Typical computer times for a single case

which is based cn Chebyshev-Fourier-Chebyshev are in the range of 6-12 hours on VAX-class

expansions in the radial, azimuthal, and axial direc- machines. Six-degree-of-freedom flight simulators 9

tion. The method exploits the symmetries of the typically use 2-106 time steps over the flight time of

problem. Using a volume approach and an analytical the order of 30 seconds. Study of the interaction of

result by Rosenblat, accurate moments are obtained the interior fluid motion with the exterior aeroballis-

in small fractions of the tirre required by other tics consequently requires either a very fast subrou-

codes. Solutions for the steady motion are presented tine for calculating the liquid moments or interpola-

and compared with numerical and experimental data. tion in a multi-dimensional table of 500-1000 8 pre-

The performance of our code is evaluated in com- calculated values. Hence, flight simulations for

parison with other computer codes. liquid-filled shells are currently a very expensive tool
and are not ready for routine applications.

Introduction In previous work 9 we conducted a theoretical

Gyros and rotating fluids often exhibit unex- analysis which aimed at the origin of the viscous des-

pected behavior. In the past, it has been recognized pin (negative roll) moment in cylinders of large

that spin-stabilized shells with liquid payloads can aspect ratio. This analysis showed that the deviation

suffer a dynamical instability originating from reso- from solid body rotation is governed by a small

nance with inertial waves.1 Since this phenomenon is parameter, e = (0 /•w)sin#, involving the nutation

basically inviscid and is routinely avoided by proper rate P the nutation angle 0, and the spin rate w. A

design, it was surprising to observe in some cases solution of the linearized equations was developed for

another type of instability which is characterized by a finite-length segment of an infinitely long cylinder,

an increase in nutation (or yaw) angle and a simul- i. e. disregarding the end walls of the cylinder. Velo-

taneous loss in spin rate. The rapid drop in spin rate city field and the viscous components of the moments

is cle;rly a viscous phenomenon, and laboratory were obtained in closed form. The velocity field con-

experiments, ccmputational results, and field tests ssts only of an axial component of order ) (e) which

have meanwhile shown that this instability is caused is the prominent feature of the fluid motion and pro-

by the nutation-induced fluid motion in a certain duces a negative roll moment of order 0(0 2) owing

range of relatively small Reynolds numbers, to Coriolis forces. Although this roll moment is in

.,%fthough in special cases this instability has been reasonable agreement with experimental and compu-

overcome by trial and error, future design of reliable rational data, the original analysis accounted only for

the vibtous part of the yaw and pitch moment.

* Professor, Engineennr.g Science and Mechanics These latter moments contain essential contributions
Member A•ItA of the pressure 4 that originate from the turning of
Research A.mociate the flow near the end walls and were not captured by

Copyright 1997 by lb. Herbert Published by 'he Arn-r,- the linear analysis The effect of nonlinearity was
can Institute of Aeronautics and Astronautics, Inc studied 10 by using perturbation expansions in w:and
P~rrmssvjr, was found to be small except for an aperiodic stream-
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ing term in the azimuthal direction. nutation angle 0, frequency r fl0/w. and Reynolds

Athough the perturbation approach cannot cap- number Re = pwa 2 /p. The aspect ratio etA~en the

ture the pressure field, it provides valuable insight solution only through the boundary conditions at the

into the structure of both equations and solution. L:wd wnll of tit1 cylitidor. Thi motioia in iubjocl tLo

The analytical work suggests the use of a numerical the no-slip and no-penetration conditions at the

method that exploit-s (i) the near-linearity of the cylinder walls. Since the velocity field degenerates for

governing equations and (ii) the smoothness or the either w =O 0 = 0, 9 = 0, or P--soo to rigid-

solution in the relevant range of Reynolds numbers. body rotation of the fluid, it is appropriate to con-

We have therefore pursued a simple concept that is centrate on the deviation vf of the velocity from

open to further refinements. We use Chebyshev- rigid-body rotation v',

FouTier-Chebyshev expansions in r, 0, z , respec- v = v + v ' = reo, (1)
tively, and convert the linearized equations into an
algebraic system for the expansion coefficients. where ea is the azimuthal unit vector. The boundary
Linearization can be performed about the trivial conditions on v4 are homogeneous. The pressure

solution or any other known solution, e. g. at neigh- field is split according to

boring parameters. The solution of the linear alge- p = p" + p' , (2a)
b:aic system is uted a3s initial approximation for 2 2 2 2
iterative improvement by the modified Newton p"=-r(l4r 5 )2 + rr+ ze - 2r: r, (2b)

method. The feasibility of this approach has been where r, e ecoso, r# = esino, r, = rcos$,

demonstrated 11 with a crude spectral approximation i c rsind. The pressure p" differs from the pres-
to the solution. Problems in calculating the pressure sure in rigid-body rotation. The form of p' is
that arise from the invalidity of the basic equations chosen such that the reduced pressure pd appears

in the corners joining the flat end walls to the only in the z-nmomentum equation.
cylindrical side wall have meanwhile been ever- In cylindrical coordinates r, 4, z, the equations
come. 12 The present version of the code exploits the for the velocity components vY d (v,, v#, vs) and
diametral symmetry of the flow about the center of pressure p d take the form
the cylinder and allows for higher resolution at mod-
est CPU times. This version can also be adapted for 1 8 1rv, ) t1 (3a)

est ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r~. CP--e.Ti erincnas e dpe o 1 + '- =0 , a
the analysis of unsteady problems. Dramatic r at r 40- • 9 Z

increase in efficiency has recently been achieved 13 by v,
combining an analytical result of Rosenblat tt al. 6 DrY" - -- r - 2(r + rjve +2rav =

with a volume formulation for calculating the liquid i V, 2 avb

moments. The moments can be obtained from only -p1- + ReK[" v- --- , 3b)

the simply periodic components of the axial velocity 2

and the azimuthal streaming term. A fast subroutine D'v# + -- + 2(1 + r, )v, - 2r, v,

for flight% simulations exploits the analytical results. r

For more accurate studies, complete tables of I (9p d [ vO 2 vvr

moments can be calculated in a few hours on a r 50 + r2v- + --- ]J (3c)

VAX-type computer. D'v, + 2r, v- 2r#v, =

Governing Equations 9p d I D) (3d)

We consider the steady motion of a fluid of 5Z r-e v

density p and viscosity pj in a cylinder of radius a where

and length 2c in an aeroballistic coordinate system 9 a a v# a a9
z, y , z ,where z is the axis of the cylinder, as shown D' + + V- ",r + 8+ -1 + 'z8 '

in Figure 1. The inertial axis Z in flight direction a2 1 (9 1 al a2

and the z-axis enclose the nutation angle 0. The D" + -- + --1 + -

cylinder rotates with the spin rate w about z while rr rt r €2 8z2

the x , z-plane rotates with the nutation rate Ql The primary effect of nutation is the 0-periodic force

about the Z-axis. Spin rate w and nutation tate !P term - 2r r, = 2cr cosO in the z -momentum equa-

are constant. All quantities are made nondinien- tion (3d). For e - 0, equations (3) have the trivial

zaonai usIng a . ), and p fur scaling length, trne, and solution v4 d- 0, p* Ji 0. The system supports

inass, respectively. The solution depends on four the following symmetriLs:

hC•£xdirncnsional parm;eterb: aspe':t ratio 1 r c'
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V,(r ,0-itr ,-z)- v,(r, z ) (4a) are discussed by Herbert.9

v.(r o-ir, -z) - v6(r 9, z) (4b) At order 0 (02), comparison of the equation for

v,(ro. p 3 ) (r with the imaginary part of the equation for wil
i,, . (imedately shows that tOle aperiodic component of

p ,, .r - ) p' (r z )Z (4d) the azimhutal velocity is

v20 (r) -2 Ihnlw ,(r). ())
Some Analytical Result.; The 0-periodic components are governed by a cou-

The steady flow in a relatively long -. linder pled set of inhomogeneous differential equations with

(aspect ratio v7 > 4) at low Reynolds number is. variable coefficients. Essential simplification at the
expected to exhibit little axiai variation over most of expense of increausins the order of differentiation
the cylinder length. Previous work 9 has therefore results from eliminating v21 by use of the continuity
relaxed the boundary conditions at the end walls and equation. With some effort, the radial velocity corn-
studied the steady flow in a finite segment of an ponent of 0 (62) can be found in closed f ,r:n.
infinitely long cylinder.

In the physical situations of interest. u~i(J ) ;- c 1 AJ($) + C 2 Y4a )I

(.Q ,',)sin0 is a small parameter, and conse- 2i vý J48 /1/2)
quently, it is reasonable to pursue a perturý.rin +J C8 + +,

expansion in e This provides vd in the form J1 (B/v')
1C where a = 3r, 3=(i - )Re1A, and Ji, J 2, and

v" v(r,4) (5) Y., arc Bessel functions. The coefficients c , c2, c3 ,
"A-i and c , can be determined numerically.1 0 In view of

and similar expressions for p d. The development of the effort involved in deriving the closed form solu-
expre--sions for the expansion coefficients v("' from tion for u2 1 and the ultimate need to determine the
equations (3) leads to an alternating pattern: coefficients numerically, the differential equations for

(0,0, O ft,:) , n odd , the third-order components were solved by means of

v(S= (0, ), v~ ),0) , n even . (6) a spectral collocation method.
The motion is governed by the axial component

and the components of v0") take the form w 1 at order 0(e). Of the higher order terms, only

M 2 the aperiodic term v20 is substantial. In the
V,( = (u", e 2 "' - tirn e' 2 "') , (ia) cylinder's center section, these terms are in good

t I,2 agreement with computational results. All the other

- Vao + 1 (V" C., + V1,f e- 0) (7, (b) terms are not only of order 0(1) but in fact less than
rn-I unity, assuring rapid convergence of the perturbation

(n) = (2(m,./2 i (2m - 1 )#- series. The contribution of w 3 i to the despin
rn wI .C moment is negligible. The C-periodic terms oscillate

about zero as r varies between 0 < r < 1. Accu-
where the tilde denotes the complex conjugate. The rate representation of single high-order terms by
aperiodic term in v$(M' is suppressed by the con- radial Chebyshev series may require numerous expan-
tinuity equation. The r-dependent coefficient func- sion functions. For the total velocity field, however,
tions in Eqs. (7) are required to 3atisfy homogeneous the error in representing these terms is of little
boundary conditions at r 1 and to be finite at the importance. At Reynolds numbers in the range of
axiE 7 = 0. maaximum despin moment, reasonably accurate

The axial velocity at order 0(f) can be found in approximations can be obtained with only a few
anal. tical form, pe-vitromials in radial direction. In the azimuthal

/ b)r ) . ,lirection, the solution is governed by terms periodic
i, .(r) ,i -) r , (8) in o, and by the aperiodic term v2D. Fourier serieswith three or five modes, therefore, provide approxi-

where I, denotes the modified Bessel function, and mations of sufficient accuracy for practiLal purpose.
a = (1 - i )(Re .2)1.2. This solution i3 valid for The perturbation analysis clearly shows that the
arbitrarY Reynolds number but may be unstable ,s main features of the flow are governed by the linear
Re exceeds some critical value. This component is 0 (e I part of equations (3) with small corrections for
the dominating feature of the flow in a long cylinder nonlinearity This property will not change for a
The initer:st!ing tr.±pertie3 of the associate'i tlow field finite-i .ngth cylinder

lA-ppendi x D
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Spectral Approximations rather unspecific. We have therefore performed a

The results of the analytical work suggest that detailed analysis of the flow in a square driven by an

a good approximation to 'he flow in a finite cylinder internal force field. This simpler two-dimensional

can be obtained by solving linearized verions of irolHIcIIIi cxliibita all characteristics - iuaclaadioig thr

equations (3). U.ir•rization can he performed in spurious pressure term - of the original problem.

difTerent ways. The first is a linearization in lDetailed result.s of this study will be reported else-

Besides Eqs. (4), the retilting equationis - . where.ile '['14 The study reveals that the spurious term

additional symmetries; vanishes in all collocation points except the corners,
' ( r o- v' (r ~where it may assume arbitrary values. The term can

(r, h.• suppresscd by retaining in the corners one of the

p ' (r , -- ,'r. z) - p (r 0, 1) . (jib) momentum equations that contain the derivative of
the pres~sure in the direction of the boundary.

These relations permit useful checks on the resuit.s of

the spectral code. A second linear system can be In a second version of the spectral code, the

obtained by linearization in the components of v4 problems of the pressure calculation have been

This linearization retains coupling terms such as avoided by using a different set of collocation points.

2rev, in Eq. (3b) which destroy the sym.-netries (11). The expansion functions in radial and axial direction

The second system can be considered a special case depend on the index I and may be different for the
with -,d _ 0 of a linearization about -,ome known variables v,, v,, v,, and p". They are combinations

solution Cd The latter procedure is very efficient if of eveni or odd Chebyshev poiynoinais sutia What

tb- soluti,n iq sought for a densely spaced sequence (i) the homogencous boundary conditions are
of parameter combinat,,,s .- :.n flight simulations. implicitly satisfied,

The algebraic cr-m ,if the equations is obtained (ii) the symmetry conditions (4) are satisfied, and
by use of a spectral collocation method. The velocity (iii) the limit value of the variables for r - 0 (i. e.

components are expressed in the form the value on the axis) is inde-endent of ')

K L .f The collocation points are
k-ii•=in -I 'I k -ksin- - , k = 1,2, -K , (15a)

w-ith similar expressions for v., t,. , and p'. The 2K

azimuthal functions are Zr s r M - Iý sin • ' - --r M 1, 2, "'M. (15b)

cos 2O ,lIodd, 72

2 , Consequently 0 < r,, and no points are located on
F sine . (13) the axis. Also, rk < 1, z,, < ,q such that no points

S 2 'are located on the surface. The points in iadial and

The azimuthal collocation points are equidistant. axial direction are concentrated near the boundLry
such that high resolution in this region is obtained

= 2-,(, - I),L , I = 1? 2. L , (14) without additional coordinate stretching. Thus the

"and L, is odd. boundary layers forming at higher Reynolds number

In a firmt version of the code, radial and ax,al can be resoied by slightly increasing K and M.

collocation points are located at the maxima of the The spectral collocation method converts the

hi-hKst Chehyshev polynomials. The boundary con- linear system of partial differential equations derived

ditions are implemented by replacing three of the from Eqs. (3) into an algebraic system of dimension

four differential equations in the boundary points. N = .K '1 M for the coefficients uki,, , Vkim ,,, wi

The question then is which equation should I), and p,,, of v, , v#, v, , and p , respectively. The

retained and where the condition on the pressure, linear system for the expansion coefficients is solved

e.g. p d = 0. should be applied. Trial-and-error by Gauss elimination with partial pivoting. The sub-

leads to numerous cases with ill-determir-.d matrices routine used retains all data required to solve the

or zero determinant. In other cases, a correct solu- same system with a new right-hand side without

tion for the velocity field is obtained, but the pres- repeating the costly reduction of the matrix to upper

sure contains a non-physical spurious term. Prob- triangular form. Once the solution is obtained, a

lems itrl sp,:ctrim calculations of the pressure in new right-hand side is formed by taking the non-

closed domains with corners are wdll-known h-it the linear terms into account and the system is itera-

reports on their origin and methods for soluuon are tiveiy solved until sufficient accuracy is achieved

The- procedure is equivalent to the modified Newton
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iteration (without updaung the Jacobian in every and radial mean velocity field is given in Figure 5.
step) and converges rapidly since the nonlinear This streaming term exhibita a toroidal motion near

corrections to the velocity are small while the pres- the end in each half of the cylinder and causes a slow
aure appears litzICLr inI e(I(U tiLLmI (3) ,i1a(f 4,f fluid eleiniriit.a with romport La ciretnrtr nrbit.m

This ,niiit, velocity produces the symmetric pattern

Resulte for Velocity and Pressure il flow vsualizat~ons 16 at low Reynolds number,.

In the following, we present some rv.sihtill frr At. I.h1 higher 1eynnldlq number Re .100, I-he
the velocity and pressure fields at 0 -- 20, maximum axial velocity appears at 0 900. .As

r - 0.16667. and Y7 , 4.368 which results in shown in Figure 6, the flow in the plane 0 = 900
S ý 0.057. The results are for K ý 6, L = 5, and breaks up into two swirls, one in each half of the
M = 8, and consequently N = 960. Calculation of cylinder, with little flow across the plane z - 0.
a single solution with this high resolution requires Three weak swirls develop in the plane 0 = 0 such
about 2 minutes on a Cray-IS. Figure 2 shows the that the velocity field is reminiscent of a chain with
axial and radial velocities in the planes o - 450 and five links. Notably, the break-up into cells is res-
P ý 135' at R e 20. Only the upper half. tricted to an inner region of the cylinder. The

z > 0, of the cylinder is shown; the lower half is motion in the pronounced boundary layer visible in
governed by the symmetries (4). The scale values the plane 0 - 0 does not follow the cellular struc-
give the velocity per unit length where the diameter ture and may have a direction opposite to the coie
is six units. The velocity distribution at z = 0 flow. Th, pressure variation is characteristically
agrees well with the resultzs of the perturbation different from that at low Reynolds number. Figure
analysis and computations with the Sandia rode.3  7 shows the strong variation and the formation of an
Near the end wals, the solution is more realistic and almost alrnmmetric pattern along the cylinder in the
more accurate than the Sandia results. The figure plane p , 0, while the variation at € = 900 is
also verities the existence of a predominantly axial rather weak. This pressure field explains the void
flow ower most of the cylinder length, except within a observations of Miller 16 which show a wavy distor-
region J.f Iif order of the r3dius ne.- the end wall. tion of the void in the plane € = 0 at high Reynolds
Linear and nonlinear velocity distributions are hardly numbers. The steep and opposite pressure gradients
distinguishable. Clearly visible is the turning of the across the cylinder axis near z /r• = 0.25 and
flow near the end wall. While the flow appears z "ri - 0.75 displace the void near these positions in
steady in the coordinate system chosen, the velocity opposite directions along the diameter at 0 - 15'
field describes in fact an oscillatory motion of fluid
elements about their niear-circular orbit. Calculation of the Liquid Momenta

The pressure distribution, for the same case are Conservation of angular momentum for the
sho'ln il Figure 3 with the heavy lines indicating steady flow in a control volume V with surface S

pos.itive values. Remarkable is the formation of rotating with constant rate 01 about a fixed axis
regions of high and low pressure in tLi. corner near requires
, "- 450 and 0 ; 1350 . respectively, which produce M (r X F)dS f rX (20 x v)pdV

laxge contributions to the moments about z axis and M V
y -axis. E1xcept in this region near the end walls, the
variation of the pi-,ssire is relatively weak. '",li, f r f 0 ×(0 ×r)lpdV

V
azi:r,uthal positioin of extrernum pressure changes

from 0 = 0 for small values of IRe to o 90; at f (r x v)p(v d S) (16)
fJe - 1($)O. S

where the velocity v is measured relative to the aero-
s Tre fields arc azirnuthally periodic with period 2prc ballistic fiaine On the left-hand side, M is the rcsil-

irc liaiiiiis are a ini ly perin odic wtigth l eie d small , r. tant torque or, the control volume, r is the position
Thitvector, and F the stress acting on the cylinder. Theof ;oil•r, earity in the range of low Reynoldsnubers. The or". important noniinear term is the presence and meaning of certain terms depend on the

ap<'no'lic nican flow. This is .learly shown by Figure choice of the control volume. The surface integral on
• 1 which meaes the azTisuthal velocity in the center the right-hand side of Eq. (16) vanishes if the surface

-.0;,AIgivs t e alin tha veociy i th rffif-r of the control volume is closed.
phi':, z 7- 0. The aperiodic component is opposite
to 0,. riglA-bo',d notatio: and exerts a negative roll Fo0 ease of practical application, we express the

r,,,m,,irit ti,;,ughi the vail shear stress r,. The axial nionient M =;(.Of,. my...I) in terms of cartesian
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.. iLz wilicLi p ovide yaw, pitch, and roll 2( n 2. (
moment, respectively. Analogue to Eq. (1) we f f f rsin4drd~dz

decompose the moments into -q
A ." -. V_3fd I nnO .(22r)

M(17) 'Tic volume integral approach leads to handy expres-

where M' corresponds to the pure rigid-body Iiotion sii s which involvC only the radial and aziniutldir
while ?& originates from the deviation velocit.y anl vvloci.y cotnponcnL%. Integration over 4 reluee'.q .he
pressure. For the cylindrical control volume, the requirements in fact t,- the knowledge of the

rigid-body rotation causes only a pitch component aperiodic component of vi and the simply periodic
M r= 27r e r711 + - )1 _L (1) components of v,. Therefore, the volume approach

tanO 2 3 can also be applied to the analytical results given

while .f•r -= M.' ý 0. Note that M is dimensionless; above and provides yaw and pitch moments without

the reference moment is paj 2. explicit knowledge of the pressure.

The evaluation of the components of Md bears Results for the Liquid Moments
some ambiguity that, can be exploited for advantages. While velocity and pressure fields are primarily
Previous computational work 3. ,.5, 6 employed a con-

trol volume consisting of an "empty" closed cylinder of basic fluid mechanical interest, the practical need

with only the pressure and stresses acting on the for the moments dictates the measure for efficiency
inside surface. In this 'surface approach," the right of the code. The moments derived from the volume

hand side of Eq. (16) vanishes and the moments are approach and the surface approach applied to the
obtained from the stresses F at the inside wall of the same spectral solutions is shown in Tables 1 and 2,

control volume. !;ere, we choose a "volume respectively. The Reynolds number Re = 20 is in

approach" that bears great advantages especially for the range of maximum despin moment M,
computational work. Table 1. Volume Approach

We consider a control volume consisting of a
solid cylindrical surface completely enclosing the Y7- 4.368 r = .1667 0 = 20 Re = 20

liquid. The moment calculation for this "full" con- K L M. Af, Ad,
trol volume rests on the relation 3 3 3 0.08305 0.07475 0.03023

Md f r X(20 Xvd)pdV (19) 4 3 4 0.08260 0.07334 0.03006
V S 3 5 0.08300 0.07332 0.03021

Using analytical relations derived by Rosenblat et

al-,6 the components of M' can be shown to take the 5 3 6 0.08317 0.07353 0.03027

form 6 3 5 0.08300 0.07332 0.03021

Nfd - I, coso (20a) 6 3 6 0.08317 0.07353 0.03027

"'1114 = 12 stu11 - 13 cosO (20b) 4 5 4 0.08280 0 07353 0.03014

M -- I, sin9 ("Oc) 5 5 5 0.08322 0.07355 0.03029

h 6 5 6 0.08340 0.07374 0.03035

6 5 8 0.08335 0.07385 0.03034
= f z(v, cos- v sinP)rdrdddz (21a)

V!, 1 /- r It is obvious that the volume approach provides
st,, r 2drd dz (21by results of b)perior qualt, and inore rapid conver-

- gence rhe required (absolute) accuracy of 10- 3 for
13 = r' drd dz (2 1c) vrngineering applications can be achieved with the

V low truncation K ý 4, L - 3, M A 4. This accu-

= - I] .(2 1d) racy has to be seen in the light of considerable uncer-

tainty in the moments governing the exterior aero-
tirai'm. we obtain the moments in the form dynamics of the projectile. \Ve note, however, that

, f san increase in the aspect ratio -nay require additional
_tr JI f 1r •cosdrdodz (22a) expansion functions in axial directimui wh~le increas-

iilg Reynolds nurnher reqpuirer : iihe, resolutiorn in

!'" r bc j f 'drd,d hoth radial and _xial diro.t ior F-i.;re 9 gives the
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s, Able Jprojec ti{e flight.
Table 2, Surface Approach kbepoch Rgt

Figure 12 shows the dependence of the yaw and

= 4.368 r - .1667 0 - 20 Re - 20 pitch momentt, per unit length (the roll moment is

K L M M, My !t. proportional to Ad,) on the aspect ratio of tite
eylitler and compares with results or the code writ,-

3 3 3 0.07394 0.09396 0.03308 i,,n by Strikwerda & Nagcl.5,7 and the .analytical

4 3 '4 0.072.17 0.08133 0.029)92 r,.,l 11,4 f io -- oo. Th is diagran i,,dicale thiat. a

5 3 5 0.07901 0.07291 0.0302.1 reduction in the overall liquid momcnts for a gi"'n
fluid miss can be achieved by splitting the cylindri-

5 3 6 0.08 178 0.07039 0.03028 cal volume into slices of low aspect ratio.

6 3 5 0.07864 0.07354 0.03023

6 3 6 0.08137 0.07115 0.03027 Discussion

4 5 4 0.07289 0.08354 0.02999 The codes previously in use may serve for
establishing some basic results but are too inefficient

5 5 5 0.07894 0.077GC 0.03032 (and insufficiently verified) for routine applications.

6 5 6 0.08152 0.07491 0.03036 The finite-difference code developed at Sandia

6 5 8 0.08289 0.07415 0.03034 Laboratories 3, rests on Chorin's method of artificial
compressibility and provides the steady solution at

comparison of the roll moments for a wide range of 11 X 24 X 21 grid points in r, 0, z -direction by

Reynolds numbers with the experimental results or integrating over typically 104 to 8'104 time steps, a

Miller 2 and with computational results. 4, 6 The devi- task that requires 6 to 48 minutes of CPU time on a

ation of the results of the Sandia code 4 is due to Cray-IS. The result consists of over 22,000 values of

using inappropriate formulas for the moments in the the velocities v, , v4, v, and the pressure p.

nutating coordinate system.7 The agreement with the Strikwerda & Nagel 5 briefly describe a code
other computational data is good. Test runs with using finite differences in radial and axial direction

high resolution up to Re = 300 indicate that the and pseudospectral differencing in the azimuthal
small errors are due to insufficient resolution of the direction. Nonuniform grids are introduced for
finite-element code 6 in combination with the surface increased resolution near the walls. The difference
approach for the moments. The experiments were equations are solvwd by an iterative method based on
made in a range of spin rates w between 2000 and successive over-relaxation. The computer time
4000 rpm. While w = 3000 rpm has been used in required is comparable to that of the Sandia code. A
figure 9, assumption of a lower value would improve thorough evaluation of the two codes is currently
the comparison with respect to the maximum values, conducted at BRL. 7

Figure 10 shows a similar comparison for the yaw The experience with the present version of the
and pitch moments. The results of the Sandia code spectral code shows that high performance can be
are suppressed since they suffer from a dimensional achieved. The solution is obtained in semi-analytical

inconsistency. 7 While the agreement for the yaw form with only N = 4K -L M (typically less than
moment at high Reynolds numbers is surprisingly 500) numerical coefficients. This low data volume is
good, the deviation in the pitch moment is likely to especially attractive for storage and for communica-
originate from insufficient resolution of the steep Lion withi remote supercomputers. The code is very
pressure gradients. This source of discretization well suited for vectorization, since practically all
errors has been eliminated in the results of the spec- cpJ time is spent on constructing and solving an

tral code. algebraic system. The code demands larger memory

The effect, of nonlincarity in ( on the yaw and t.inn othr codes, because, 6.-bit arithmetic is highly

pitch moments is shown in Figure 11 for different recommended for spectral methods in general, and

nutation angles 0 at fixed r = 1 and different values the algebraic system requires N(N + 1) words of

of r at 0 ý 20' . The figure shows the ratio of the storage. A run with N ý 500 requires about 2

nonlinear to the linear solution. In absence of non- Mbyte of memory and can easily be carried out on

linearity all points should be located on the horizon- nowadays engineering workstations within a few

tal lines. Yaw and roll moments are largely indepen- minutes. (Most of our work was done on an

dent of •. However, the nonlinear effect on the pitch MC68010-based Apollo DN300 workstation, Runs

moment, is only :,.gligible at small nutation angles 0 with N == 500 require 160 minutes, while moment

a.s they may occur for soft laincl, conditions and 'alculations with N = 192 require less than 3
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tiiiiiirtc, per pll-It.. ýiriee the memory requirement is corners and, therefore, inaccuracies in this region
acceptable even if higher resolution is desired, the may influence yaw and pitch moments. In this con-

method applied here is a viable alternative in text, it is instructive to evaluate the convergence his-

it)' to oballrit iLcelril~tvto lllitcioiMfi'4 the. dw '~~l m ruli- inuII d III thell SrUldilL code1.3 Whl the vvlvinuiy
leni dircctly fromn (large) ilgerinie riysterin 1ar' vidlii- 'iuIv riIL(luo4s ;L (1 nIu-Leadtv)y mtLtt, itbowi 7rV. o f

able potential to :uiswer t1tJ(' wuestiflhi'het 1,111' Il 1n I*t':l.ini' a e wh.o fiivrg li'~ ''~ii

steady solution is stable, and allows analysis of WiI',\e oi~ iil~tat, by vies of[ the voillnti

unsteady motions with Implicit cimie-steupjirig. Ho' it- ppi'oaicl equtivalent or superior values roI- ow
design of a reliable codle for the uinsteady problem ni nwiients coild1( be obtained with less than 20%i of

can take profit from the knowledge or the cigenvaluc the iterations. It is worthwhile to note tl~at the
spectrum for small unsteady disturbances of the analytical results of Rosenblat 'et al.,6 and equations
steady flow. (21) for t.he moments are valid for close(] containers

While the calculation of velocity and pressure ofmore generalsaeadtu a eue o te

fields provides insight into the physics of the flow, interior flow problems.

the practical interest in the moments for the quasi- AKOLDMN
steadily changing parameters in flight simulations AKO LDMN
can he satisfied with modest amounts of computer The discussions with 'S. Roseniblat arid 'M.
ti me. This is due to using the modified Newton Nusca are greatly appreciated. Both ma.Si results
method which uipdates the Jacobian only when availalile prior to publication. The technical ritbnit~or
dem~anded by deteriorating convergence, or (.his 1u'ojuct, M. C. Miller deserves our, gratituide

In general, the Volumne approach provides much for his sustained interest and* the support of this

more accurate results than the surface approach. work by the U. S. Army AMOCOM under Contract

This is due to the additional smoothing of fluctuating DAAA15-85-14-0012.
data by integrating over three instead of two space
directions and to using fewer, less fluctuating, and REFERENCES
more accurate inpu 't. data. The absence of v, in the 1 R.Sde 195" Suvyoth flid

volume formulation is welcome. This velocity com- dynamic aspects of liquid-filled prjcie,
ponent. Is small over most of the cylinder length but AIA.A Paper No. 85-1822-CP.
oscillatory in the radial direction (Herbert et al.
1087) wvi'h considerable gradients near the wall. Near 2. M. C. Miller 1982 "Flight instabilities of spin-
the end walls, v, is of the same order as v, with ning projectiles having nonrigid payloads," J.
steep gradients toward the end wall. Inspecti.',n of Guidance, Control, and Dyrnamics, vol. 5, pp.
the veiocity plots of Vaughn et p.1.4 indicates that 151-157.j
these gradients were difficult to rt~olve by the finite 3. H. R. Vaughn, W. L. Oberkampf, and W. P.
differ':'-e method. The aperiodic component of vj is Wolfe 1983 "Numerical solution for a spin-
a i-'.,.,iý-l small streamning term of smooth and ning nutating fluid-filled cylinder," Sandia
alrno~t !iniform i 'iavior along t~he cylinder axis. Report SAýND 83-1789.
The large tZ!InUthAlly periodic components of V" 4. H. R. Vaughn, W. L. Oberkampf, and W. P. '
near the endl walls do, not affect the moment calcula- Wolfe 1985 "Flutid motion inside a spinning

1.1on. ~~nutating cyidr"J. Fluid i~erh., vol. 150, pp.

Probably' the greatest advantage of the volume 121-138.
fc)rmiiilation is the absence of the pressure from the 5. J. C. Strikwerda and Y. MI. Nagel 1985 "A

'(pmiiar OC. Thiis property favors the use of numT~e-rical method for comnputing the flow i

pre ir-!reeset o baicequtiose. . i trmsofrotating and con Ing fluid-filled cylinders," in
'.r )et r V cc tor patential. T~esmaller number of Po 94Sinii ofo h~ia

d~pnirr "arra0)1- can be, exploited for further Defens~e Res~earch, Aberdeen Provi'ng Ground,
rhfe !ffilciewv L-Ive-ri in natural variable Varyland, ed. M. Rausa, pp. .523-527, CRD .C-

f~ormri :!atiomr;:, tip; pre-ssure is dif[fic ult to obtain wit~h SP-85006.
highr arccuracy beýcause: of the invalidity of the equa- 6. S. Rosenblat, A. Gooding, and M. S. Engleman
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Figure 3. Cont~our plot or the pressure field in the F Igure 4. Vector plot of the a~imuthal velocity v*
pianes 0 = 45' (left) and and 0 135' (right) at, in the center plane at z - ,Re 9P2(. Scale
Re =~20 for z > 0. Levels every 0.0025. 0.03.

,,,\ = 90* \\\ (right, scl!02 tR 0 o
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Figure 7. Contour plot of the pressure field in the Figure 8. Contour plot of the pressure filled in the
planes 0 = 0' (left) ar~d and 0 - 90' (right) at plane 0.25 at Re = 300. Levels every 0.005.

Re 300 for z > 0. Levels every 0.005.
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FLIGHT SIMULATION FOR LIQUID-FILLED PROJECTILES

Thorwald Herbert

Department of Mechanical Engineering

LDcartment of Aeronautics and Astronautics
The Ohio Stat-e University,

Columbus, Ohio 43210

A BS TR!A _ T

The fluid motion in a liquid-filled payload container can jeopardize the stable flight of spin-
stabilized projectiles. We have developed analytical solutions to obtain estimates and an
efficient numerical (spectral) method to calculate accurate values of the moments exerted by
the liquid on the projectile. These moments have been incorporated into a modified version of
the numerical flight simulator suggested by Vaughn, Oberkampf & Wolfe. Prototype flights
with liquid versus solid payload veaifv the destabilizing effect of the liquid payload and are
consistent with field tests. Moreover, we demonstrate that such flight simulations can be
expedited on today's engineering work stations.

1. Introduction

Well-designed spin-stabilized projectiles can exhibit a severe flight instability if they carry

a liquid payload. Two types of such instability can be excited by the coning motion of the
proje-tile about the trajectory.' The first type originates from resonance with inertial waves
at critical frequencies (ratios of coning rate f' to spin rate W). This resonance is most pro-
nounced for low-viscosity liquid fills, i.e. at high Reynolds numbers, and depends sensitively on
the cylinder's aspect ratio. Theoretical analysis involving the boundary-layer approximation
provides design criteria for sufficiently large Reynolds numbers, I? > 1000, say. We define the
Reynolds number by R = pwa 2/y , where p is the density, a the radius of the cylindrical
cavity, and ui the viscosity. The second type of instability is of essentially viscous nature and
occurs at iow and medium Reynolds numbers for a wide range of aspect ratios and frequencies.
Theoretical analysis must be ba-sed on the Navier-Stokes equations. For a wide range of Rev-

nolds numbers, both types of instability may appear simultaneously.

To enable the design of reliable projectiles, the effects of the liquid payload must. be
analyzed and incorporated into the design tools such as the numerical flight simulators. A
prototype flight simulator (FFS6DOF) has been developed by Vaughn ct al. 2 by integrating a
table of liquid moments into a six-degree-of-freedom code. The moments were computed with
a Navier-Stokes solver (FFS6) 3. ' The computational demands of this two-level code prevent
application in practice.

In the following we describe two more efficient procedur,,, to obtain the liquid moments
for integration into flight simulations;. The first method rests on quick estimates of the

moments from analytical solutions, the second efficiently calculates accurate moments in a
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wide range of Reynolds numbe-s by means of a spectral NaNier-Stokes code. The development
of a new Met!,od for calculating the moments was essential in achieving these goals. One of
the flights studicd by Vaughn et. al 2 is used as an example to show some shortcomings of the
earlier approach and to demonstrate the feasibility of flight simulations for liquid-filled sheikz
on engineering work stations.

2. Approximate Solutions

In earlier work,5 6 we have reported result.-, of a perturbation analysis of the nonlinear
problem for the deviation of the velocitv from rigid-body rotation in a finite segment of an
infinite cylinder. The expansion parameter is ( - (Q /w)sinO, where 0 is the coning angle.
At the linear level, 0(f), we obtain a purely axial flow in the form
re - 2c Im{ll(Iar )VI (n) - r i ei0 where 11 denot q the modified Bessel function.

-- - I )(H 2)1 2, and the azimuthal angle o is measured from the plane of the two axes
of rotation. This component vI is the doninaling feature of the flow in a long cylinder. The
second order terms, 0(c2). were also obtained in arialytical form, Of these terms. only the
aperiodic cor mponent of the aii :tuthal velocity is relevai t to the moments. This component
turns out to be proportioral to (ie component of t,,t in the plate o - ."2.
t, = -2c

2-leU 1(c~r)1 1 (o- r}. This solution is valid for arbitrary Reynolds number
Owing to the neglect of the end walls, however, this analytical result is expected to be a rea-
sor able approximation only for cylinders of sufficiently large aspect ratio.

3. Spectral Naviýr. Stokes Code

To calculate ttie deviation of velocity field, pressure field. and moments from solid-body
motion in a wide range of parameters for finite-length cylinders, we have developed a fully
spectral code ' for solving the Navier-Stokes equations. The code uses Fourier series in the
azimuthal direction and combinations of Chebyshev polynomials in the radial and axial direc-
tions. The combinations Pre chosen such that the no-penetration and no-slip boundary condi-
tions are implicitly satisfied. By appropriate choice of even or odd polynomials, we avoid
singularities onl the axis and implement the symmetries of the solution in the upper and lower
half cylinder. Gauss-Lobatto points are used for collocation such that no points are locat,-& on
,.c surface nor the axis. This choice avoids the occurrence of spurious pressure terms associ-

ated with the corners of the domain and solves the axis problem in an elegant way.

The sr,ldtl io procedure consists of two basic elements, the first of which rests on a linear-
ization of the Na'vier-Stokes equations about some known solution d. This 'Known' solution
may be _dý, - 0, or in general, a solution previously obtained for neighboring parameters.
The collocation method converts the linear partial differential equations into a linear algebraic
syvsein of dimension \' - 4 K .L -M for the coefficients of the natural variables v d, td1, dU

aMd Pd . The numbers K , L , M of expansion functions in radial, azimuthal, and axial direc-
tiol, re-sputiwvlyY, governi the accuracy of the approximation.

'Il second element of the procedure utilizes the modified Newton method for solving the
notnlinear problem. In the modified form, the Jacobian is not updated in every step but only

when necessary. 'I'[le rned t- recalculate th, .JrnbiAn is detected by a simple algorithm that

monitors the rate of convergence. This strategy is especially suited lor flight simulations
where the parameters vary slowly Nith the fnight time.
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4. Volume Integrals for the Moments

In earlier work,3, 2, 8, 9 the moments are calculated by integration of normal and tangen-
tial stresses acting at the inside wall of the c','lindcIr. This 'surface approach' derives the

moments from the pressure and the velocity gradients at the wall. These values are difficult to

obtain with good accuracy. Li & Herbert 10 have developed a new formulation for the
moments which rests on volume integrals. The nondimensional moment. coefficients can be
shown to take the Form

1 2 7r I

"2 L.f r 2cososdrd 0dz , Mkd %f- Id tanO,

7 2?r 1 77 2• 7 1

Yd f f f Jt, r2drd dz - anO f0 f f tz rsin6 drd 0dz
- 7 0 0 F7 - 0

where q is the cylinder's aspect ratio. The reference moment is pý,, 2 a a. The volume integral

approach involves only the radial and azimuthal velocity components Integration over do
reduces the requirements to the knowledge of the aperiodic component t'v0 of tv. and the sirn-

ply periodic component vt' of v,. Therefore, the volume approara can also be applied to the

analtical results given above and provides yaw and pitch moments without explicit knowledge

of the pressure.

5. Results for the Liquid Moments

While the accuratc descript',1m, ,f velocity and pressure at. higher Reynolds numbers

requires many expansion functions, the smoothing of small oscillations by the volume approach

allows calculation of the moments from crude approximations. The (absolute) accuracy of

10-3 for engineering applications can be achieved with spectral approximations as low as

K = 4, L = 3, A, = 4. The accu:acy has to be seen in the light of considerable uncertainty
in the moments governing the exterior aerodynamics of the projectile. We note, however, that

large aspect ratios may require additional expansion functions in axial direction while increas-

ing Reynolds number in general requires higher resolution in both radial and axial direction.

Figure 1 shows the comparison of numerical results for the yaw and pitch moments. The

roll moment is proportional to the yaw moment. While the agreement for the yaw moment at

high Reynolds numbers is surprisingly good, the deviation in the pitch moment is likely to ori-

ginate from insufficient resolution of the steep pressure gradients in the finite-element code.9

The effect of discretization errors has been reduced in the results of the spectral code by use of
the volume integrals for the moments. Figure 2 compares the analytical estimates for yaw and

pitch moments with the numerical results of the spectral code. Some systematic deviations
exist. but, the quantitative and qualitative features are very similar. The computational effort

for the analytical results is negligible.

8. A Prototype Flight

We have used the flight of an X1483 projectile as described by Vaughn et al. 2 as a test

cýt(e for verify'ing the function of our version of the flight simulator, for studying the effct of

tl,- improved moments in comparison with earlier work, and for evaluating the different con-

cepts of incorporating the fluid moments. Some erratic behavior of the original code

FFS6I)OF under extreme flight conditions will be cultivated in a future version.
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Two options have been considered for incorporating the liquid moments. The first way

utilizes a table of moments and linear interpolation. as the original code. Alternatively, the

1ojno1ents are calculated by a subroutine which is called whenever the parameters vary beyond

some threshold. The latter approach avoids the error introduced by linear interpolation on a
coarse grid and is especially efficient for stable flights after an initial transient period after

launch. For systematic studies of different launch conditions for a given shell, however, the
precilculat,?d table seems more appropriate and the efficiency of the spectral code permits use

of finer grids. Some accuracy can aLo be gained by improving the interpolation.

Our computationd work has been performed on a Sun 3/1.10 work station with floating

point accelerator. Simulation of a typical flight (32 seconds flight time) requires 12 minutes if
the liquid-moment table is precalculated. Generation of this table from the analytical solution

requires less than 10 seconds. Incorporation of the analytical estimates by subroutine contri-
butt-s a nt.gligible increase in the simulation time. Precalculation of the 9 X 8 X 8 moment

table with K = 4, L =- 3, and :kf = 4 requires less than 2 hours, although the sequence of

the calculations has not yet been optimized. This sequence is relevant when using the
modified Newton method.

In the following cases, we keep all parameters at the values specified by Vaughn et al. 2

except the pitch rate at launch. The initial data for the flight simulation - angle and pitch rate
:t. tke rll7?le - "i- d;lff,,lt. t o determine and may vary between flights. An initial pitch rate

of -1.9-16 radis was chosen by Vaughn et al. to match the observed flight behavior, 11 in partic-

ular the truncated flight time of approximately 26 seconds. Figure 3a shows the history of the

aeroballi:stic angle of attack for a solid payload (with all liquid moments set to zero) that

represents the 'normal' flight of a projectile of this type. The results of Vaughn et al. (ref. 2,
iligure 3) for a liquid payload are reproduced with our version of the code in Figure 3b. Figure

3c shows the result for the same initial conditions with the liquid moments calculated by the

spectral cod,-.. Use of the alidlytical estimates leads to an almost identical picture. With the

correct. moments, the flight is essentially stable, with some high-frequency motion over the
whole flight time. The liquid payload does not preve.nt the shell from achieving the full flight

time or distance.

When using the correct moments, we observe the flight time reported by Vaughn et al.2

and observed in the field tests 11 with initial pitch rates in excess of -3.5 rad/s as shown in

Figure 4Ia. Under the given transonic launch conditions, this pitch rate appears very realistic

(D'Ariico. personal communication). Simulation of the same flight using the analytical esti-

matcs for the moments leads to earlier onset of the instability, as shown in Figure 4b. A flight

time of 26 seconds is obtained with the lower initial pitch rate of -3.2 rad s. Since the use of

the analytical estimates predicts less stable behavior, the estimates can be used for a first con-

servative check of the design.

7. Summary

\We havy developed an alytical solutiois for tie liquid moments which allow quick and

o-i:..wrvatlive e.stimates on the flightt instability of liquid-filled shell.. For more accurate stu-

dies, the liquid moments can be generated with a spectral Navier-Stokes solver for Reynolds

1nuinb,.rs in the range lt < 1000 W\hile the analytical resilts predict only the viscous flight
instabilitv, the Naavier-Stokes solutions incorporate •-t' ".' : . *:t'*b; '; a!Id instabil-

il.y due to resonance with inertial waves.
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The ccrnpuiation of the table of liquid moments in the most critical range of Reynolds
numbers, R < 100, requires less than two hours on an cngineering work station Sun 3 , 11-0
FPA. The flight simulation runs at approximately 25 times real time, typically 12 minutes.
These dat~a clearly show that. the liquid moments cani be incorporat~ed int~o the flight, simula-
tions for practical applications.
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ABSTRACT

Artillery shells with liquid payloads may experience a severe flight instability

owing to the moments exerted by the viscous fluid motion in the cylindrical pay-

load container. Incorporation of these moments into flight simulations as a rou-

tine design tool requires a highly efficient code for solving the Navier-Stokes

equations. We describe a spectral collocation method which is based on

Chebyshev-Fourier-Chebyshev expansions in the radial, as'imuthal, and axial

direction. The method exploits the symmetries of the problem. Using a volume

approach and an analytical result by Rosenblat, accurate moments are obtained

in small fractions of the time required by other codes. Solutions for the steady

motion are presented and compared with numerical and experimental data.

Introduction

Gyros and rotating fluids often exhibit unexpecLed behavicr. In the past, it

has been recognized that spin-stabilized shells with liquid payloads can suffer a

dynamical instability originating from resonance with iiiertial waves.1 Since this

phenomenon is basically inviscid and is routinely avoided by proper design, it was

surprising to observe in some cases another type of instability which is character-

ized by an increase in nutation (or yaw) angle and a simultaneous loss in spin

rate. The rapid drop in spin rate is clearly a viscous phenomenon, and labora-

tory experiments, computational results, and field tests have meanwhile shown

that this instability is caused by the nutation-induced fluid motion in a certain

range of relatively small Reynolds numbers. Although in special cases this insta-

bility has been overcome by trial and error, 1-iture design of 1'eliable projectiles

would take profit from the opportunity to calculate the liquid moment. and to

arcount for these moments in flight simulations. The empirical data base 2 is

spars#-, however, and the computational methods in use 3,4,5, 6 are rather

demanding. An evaluation and verification or the codes by "aughn et al.4 and

Strikwerda & Nagel .5 is currently conducted at BRL. 7 Typical computer tines

for a :tingle case are in the range of 6-12 hours on VAX-class machines. Six-

degree-of-freedom flight simulations 8 typic-lly i use 21i0 5 time steps over the
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flight time of the order of 30 seconds. Study of the interaction of the interior

fluid motion with the exterior aeroballistics consequently requires either a very

fast subroutine for calculating the liquid moments or interpolation in a multi-

dimensional table of 500 - 1000 8 precalculated values. Hence, flight simulations

for liquid-filled shells are currently a very expensive tool and are not ready for

routine applications.

In previous work,9 we conducted a theoretical analysis which aimed at the

origin of the viscous despin (negative roll) moment in cylinders of large aspect

ratio. This analysis showed that the deviation from solid-body rotation is

governed by a small parameter, ( = (f /w)sinO, involving the nutation rate f0,

the nutation angle 0, and the spin rate w. A solution of the line,.rized equations

was developed for a finite-length segment of an infinitely long cylinder, i. e. disre-

garding the end walls of the cylinder. Velocity field and the viscous components

of the moments were obtained in closed form. The velocity field consists only of

an axial component of order O(e) which is the prominent feature of the fluid

motion in slender cylinders and produces a negative roll moment of order 0 (•)

owing to Coriolis forces. Although this roll moment is in reasonable agreement

with experimental and computational data, the original analysis accounted only

for the viscous part of the yaw and pitch moments. These latter moments con-

tain essential contributions of the pressure 4 that originate from the turning of

the flow near the end walls and were not captured by the linear analysis. The

effect of nonlinearity was studied 10 by using perturbation expansions in ( and

was found to be small except for an aperiodic streaming term in the azimuthal

direction.

Whereas the pressure field cannot be captured by the perturbation approach,

it provided valuable insight into the structure of equations and solution. The

analytical work suggests the use of a numerical method that exploits (i) the

ncar-linearity of the governing equations and (ii) the srnothnes:• of the solutioll

in the relevant range or Reynolds numbers. \Ve have therefore pumued a simple

concept that is open to further refinements. \We use Chebyshev-Foriler-

Chetbyshev expansions in r , z , respectively, and convert the linearized
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equations into an algebraic system ior the expansion coefficients. Linearization

can be performed about the trivial solution or any other known solution, e. g. at

neighboring parameters. The solution of the linear algebraic system is used as

initial approximation for iterative improvement by the modified Newton method.

The feasibility of this approach has been demonstrated 11 with a crude spectral

approximation to the solution. Problems in calculating the pressure that arise

from the invalidity of the basic equations alon; the joint of the flat end walls to

the cylindrical side wall have meanwhile beer overcome. 12 The present version of

the code exploits the diametral symmetry of the flow about the center of the

cylinder and allows for higher resolution at modest CPU times. This version can

also be adapted for the analysis of unsteady problems. Dramatic increase in

efficiency has recently been achieved 13 by combining an analytical result of

Rosenblat et al. 6 with a volume formulation for calcul.ting the liquid moments.

The moments can be obtained from only the simply periodic components of the

axial velocity and the azimuthal streaming term. A fast subroutine for flight

simulations exploits the analytical results. For more accurate studies, complete

tables of moments can be calculated in a few hours on an engineering worksta-

tion.

Governing Equations

We consider the steady motion of a fluid of density p and viscouity p in a

cylinder of radius a and length 2c in an aeroballistic coordinate system x, y, z,

where z is the axis of the cylinder, as shown in Figure 1. The inertial axis Z in

flight direction and the z-axis enclose the nutation angle 0. The cylinder rotates

with the spin rate w about z while the x, z -plane rotates with the nutation rate

Q about the Z-axis. Spin rate w and nutation rate Q) are constant. All quanti-

ties are made nondimensional using a , ', and p for scaling length, time, and

mass, respectively. The solution depends on four nondin-ensionnl parameters:

aspect ratio 7- = c /a, nutation angle 0, frequency r / /w, and Reynolds

number Re = pwa 2/;,. The aspect ratio entcr- the solution only through the

boundary conditions at the end walls or the cylinder. The mo: ion is subject to
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the no-slip and no-penetration conditions at the cylinder walls. Since the velocity

field degenerates for either w = 0, fl = 0, 6 = 0, or p--oo to rigid-body rota-

tion of the fluid, it is appropriate to concentrate on the deviation vd of the velo-

city from rigid-body rotation,

V=v---v + vd, VF -= reo (1la,b)

where eo is the azimuthal unit vector. The boundary conditions on v d are

homogeneous. The pressure field is split according to

p p7 + pd p r2(l+ir.)2 + r 2r2 + Z 2 C2 _ 2 rZer (2a,b)

where r, -- ecos¢, ro = esino, r, = rcosO, e = rsin9. The pressure p7

differs from the pressure in rigid-body rotation. The form of p ' is chosen such

that the reduced pressure p d appears only in the z-momentum equation.

In cylindrical coordinates r, 0, z, the equations for the velocity components

v d (v., ve, v,) and pressure p d take the form

1 D rvr 1 av¢ v
-- ) - + - = 0 (3a)Trr ao az

D'vy - - 2(1 + r,)vo + 2r v,r

ap 1 Vr 2 o
+ " 7 2 (3b)

ar Re - r2 r2 0€]b

D ' v rv, v,
D v + - +2(1+r,)v, - 2trvZ

r

1 apd 1 D" Vt 2 a9vr
c9)+ R"ep - -- +r ] (3c)

rR 8 Re "+r (3d)

D'v, +27-rve-- 2rovr -- ,dz 2rrr + R(

where

a9 a a v¢ 9 a
D I+t+ -ý O V r + ¢- + "V T

a 2  a + 1 0 2  a2

D't_____ +---- + +-

9r 2  ar Or r 02 ' a, 2
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The primary effect of nutation is the 0-periodic force term - 2r r, = 2f r cos€ in

the z -momentum equation (3d). For e = 0, equations (3) have the trivial solu-

tion Yd = 0, p d = 0. The system supports the following symmetries:

vr (r p+rr,-z) vr(r,¢ z , VO(r,0+7r, - z -- V (r ,,z) (4 a, b)

vz(r,r-,+-,r,-z) z -v.(r,, z) , p(d(r,4+7r,-z)= pd(r, 4 ,,z) (4c,d)

Therefore it is sufficient to obtain a solution in the half-cylinder, z > 0, with

appropriate symmetry conditions at z = 0.

Some Analytical Results

The st-ady flow in a relatively long cylinder (aspect ratio t7 > 4) at low

Reynolds number is expected to exhibit little axial variation over most of the

cylinder length. Previous work 9 has therefore relaxed the boundary conditions

at the end walls and studied the steady flow in a finite segment of an infinite!y

long cylinder.

In the physical situations of interest, c = (f /w) sin0 is a small parameter,

and consequently, it is reasonable to pursue a perturbation expansion in c. This

provides Vd in the form
0O

Vd= f d"v()(r,•) (5)

n =I

and similar expressions for p d. The development of expressions for the expan-

sion coefficients v(" ) from equations (3) leads to an alternating pattern:

I(0,0, v2(n)), n odd

(On ( ), t,. (n), 0 ), n even

and the components of v(') take the form

vr I-n (U(Cmei2m + Unm e - ,. •) (7a)

V rno + Y (vnm+ Vm e m (7b)
M =1
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V Z (n ) = )/2 (Wnm e i(2 m - 1) + , nm e- m -)) (7c)

in=1

where the tilde denotes the complex conjugate. The aperiodic term in v.(n) is

suppressed by the continuity equation. The r -dependent coefficient functions in

Eqs. (7) are required to satisfy homogeneous boundary conditions at r 1 and

to be finite at the axis r = 0.

The axial velocity at order 0(c) can be found in analytical form,

w,,(r)= I [t(of) - ! (8)

where 11 denotes the modified Bessel function, and a = (1 + i )(Re / 2)1/2. This

solution is valid for arbitrary Reynolds number but may be unstable as Re

exceeds some critical value. This component is the dominating feature of the

flow in a long cylinder. The interesting properties of the associated flowv field are

discussed by Herbert.9

At order 0 (e 2), comparison of the equation for v 20 with the imaginary part

of the equation for w I, immediately shows that the aperiodic compcaent of the

azimuthal velocity is

v20 (r) - -2 Im[w 11(r )1 (9)

The 4-periodic components are governed by a coupled set of inhomogeneous

differential equations with variable coefficients. With some effort, the radial velo-

city component of 0 (f 2) can be found in closed form. 10 In view of the effort

involved in deriving the analytical result and the ultimate need to determine cer-

tain coefficients numerically, the differential equations for the third-order com-

ponents were solved by means of a spectral collocation method.

The motion is governed by the axial component w1I at order 0(f). Of the
higher order terms, only the aperiodic term v20is substantial. In the cylinder's

center section, these terms are in good agreement with computational results. All

the other terms are not only of order 0 (1) but in fact less than unity, assuring

rapid convergence of the perturbation series. The contributiun of ZU31 to the
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despin moment is negligible. The 0-periodic terms oscillate about zero as r

varies between 0 < r < 1. Accurate representation of single high-order terms

by radial Chebyshev series may require numerous expansion functions. For the

total velocity field, however, the error in representing these terms is of little

importance. At Reynolds numbers in the range of maximum despin moment,

reasonably accurate approximations can be obtained with only a few polynomials

in radial direction. In the azimuthal direction, the solution is governed by terms

periodic in 0, and by the aperiodic teriM v 2o. Fourier series with three or five

modes, therefore, provide approximations of sufficient accuracy for practical p,,r-

pose. The perturbation analysis clearly shows that the main features of the flow

are governed by the linear 0 (E) part of equations (3) with small corrections for

nonlinearity. This property will not change for a finite-length cylinder.

Spectral Approximations

The results of the analytical work suggest that a good approximation to the

flow in a finite cylinder can be obtained by solving linearized versions of equa-

tions (3). Linearization can be performed in different ways. The first is a lineari-

zation in c. Besides Eqs. (4), the resulting equations support the additional sym-

metries

vd (T +7rz Vd(r, 0, z), pd(r, 0+7r, z=P d (r, 0, z) (10a,b)

These relations permit useful checks on the results of the spectral code. A second

linear system can be obtained by linearization in the components of Yd. This

linearization retains coupling terms such as 27rV€ in Eq. (3b) which destroy the

symmetries (10). The second system can be considered a special case with

va = 0 of a linearization about some known solution v . The latter procedure

is very efficient if the solution is sought for a densely spaced sequence of parame-

ter combinations as in flight simulations.

The algebraic form of the equations is obtained by use of spectral colloca-

tion. The velocity components are expressed in the form

K L M
V, Z Z Uk0,, R '(r ) F1 (o Z',-- (1
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with similar expressions for vO, v2 , and p d The azimuthal functions are

co-- 0, 1Iodd

F, = 1 2(12)
sin -¢ , 1 even

T he azimuthal collocation points are equidistant,

€ .-= 2 7r(1 1)/L , I = 1,2, L (13)

and L is odd.

In a first version of the code, radial and axial collocation points are located

at the maxima of the highest Chebyshev polynomials. The boundary conditions

are implemented by replacing three of the four differential equations in the boun-

dary points. The question then is which equation should be retained and where

the condition on the pressure, e.g. p ' = 0, should be applied. Trial-and-error

leads to numerous cases with ill-determined matrices or zero determinant. In

other cases, a correct solution for the velocity field is obtained, but the pressure

contains a non-physical spurious term. Problems with spectral calculations of the

pressure in closed domains with corners are well-known but the reports on their

origin and methods for solution are rather unspecific. We have therefore per-

formed a detailed analysis of the flow in a square driven by an internal force

field. This simpler two-dimensional problem exhibits all characteristics - includ-

ing the spurious pressure term - of the original problem. The study reveals that

the spurious term vanishes in all collocation points except the ^orners, where it

may assume arbitrary values. The term can be suppressed by retaining in the

corners one of the momentum equations that contain the derivative of the pres-

sure in the direction of the boundary.

In a second version of the spectral code, the problems of the pressure calcu-

lation have been avoided by using a different set of collocation points. The

expansion functions in radial and axial direction depend on the index I and may

be different for the variables v, , vr, v, , and p They are combinations of even

or odd Chebyshev polynomials such that
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(i) the homogeneous boundary conditions are implicitly satisfied,

(ii) the symmetry conditions (4) are satisfied, and

(iii) the limit value of the variables for r --. 0 (i. e. the value on the axis) is

independent of 0.

The collocation points are

rk sin -2k- k = 1,2, K (14a)
4K

zM 2m - 1
2m-sin .r , m = 1,2, " M (bib)11 4M

Since 0 < rk , no points are located on the axis. Also, rk < 1, Zm < rl, such

that no points are located on the surface. The points in radial and axial direction

are concentrated near the boundary such that high resolution in this region is

obtained without additional coordinate stretching. Thus the bouidary layers

forming at higher Reynolds number can be resolved by slightly increasing K and

M.

The spectral collocation method converts the linear system of partial

differential equations derived from Eqs. (3) into an algebraic system of dimension

N =- 4.K L .M for the coefficients Uktm I Vk,, , WkIm , and Pklm of vr, IV, Vz , and
pd, respectively. The linear system for the expansion coefficients is solved by

Gauss elimination with partial pivoting. The subroutine used retains all data

required to solve the same system with a new right-hand side without repeating

the costly reduction of the matrix to upper triangular form. Once the solution is

obtained, a new right-hand side is formed taking the nonlinear terms into

account and the system is iteratively solved until sufficient accuracy is achieved.

The procedure is equivalent to the modified Newton iteration (without updating

the Jacobian in every step) and converges rapidly since the nonlinear corrections

to the velocity are small while the pressure appears linear in equations (3).
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Results for Velocity and Pressure

In the following, we present some results for the velocity and pressure fields

at 0 = 200, r = 0.16667, and tj = 4.368 which results in c - 0.057. The

results are for K = 6, L = 5, and M = 8, and consequently N = 960. Calcu-

lation of a single solution with this high resolution requires abcut 2 minutes on a

Cray-lS. Figure 2 shows the axial and radial velocities in the planes -z 45'

and 0 = 135' at Re = 20. Only the upper half, z > 0, of the cylinder is

shown; the lower hah is governed by the symmetries (4). The scale values give

the velocity per unit length where the diameter is four units. The velocity distri-

bution at z = 0 agrees well with the results of the perturbation analysis and

computations with the Sandia code. 3 Near the end walls, the solution is more

realistic and more accurate than th,- Sand> ,,:s,!tS. Thc Figure als-, ver'fic., the

existence of a predominantly axial flow over most of the cylinder length, except

within a region of the order of the radius near the end wall. Linear and nonlinear

velocity distributions ac-e hardly distinguishable. Clearly visible is the turning of

the flow near the end wall. While the flow appears steady in the coordinate sys-

tern chosen, the velocity field describes in fact an oscillatory motion of fluid ele-

ments about their near-circular orbit.

The pressure distributions for the same case are shown in Figure 3 with the

heavy lines indicating positive values. Remarkable is the formation of regions of

high and low pressure in the corner near 0 ; 45' and 0 - 1350 , respectively,

which produce large contributions to the moments about x-axis and y-axis.

Except in this region near the end walls, the variation of the pressure is relatively

weak. The azimuthal position of extremum pressure changes from € 0 for

small values of Re to = 900 as Re -- oo.

The dominant components of velocity and pressure fields are azimuthally

periodic with period 2-r. The harmonics are small, indicating the Small effect of

nonlinearity in the range of low Reynolds numbers. The only important non-

linear term is the aperiodic mean flow. This is clearly shown by Figure -1 which

gives the azimuthal velocity in the center plane z =-0. The aperiodic cori-

ponent. is opposite to the rigid-body rotation and exerts a itegative roll momnent
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through the wall-shear stress r,¢. The axial and radial mean velocity field is

given in Figure 5. This streaming term exhibits a toroidal motion near the end in

each half of the cylinder and causes a slow drift of fluid elements with respect to

circular orbits. This mean velocity produces the symmetric pattern in flow visual-

izations 11 at low Reynolds numbers.

At the higher Reynolds number Re = 300, the maximum axial velocity

appears at -ý 90'. As shown in Figure 6, the flow in the plane € = 900

breaks up into two swirls, one in each half of the cylinder, with little flow across

the plane z = 0. Three weak swirls develop in the plane < = 0 such that the

velocity field is reminiscent of a chain with five links. Notably, the break-up into

cells is restricted to an inner region of the cylinder. The motion in the pro-

nounced boundary layer visible in the plane o == 0 does not follow the cellular

structure and may have a direction opposite to the core flow. The pressure varia-

tion is characteristically different from that at low Reynolds number. Figure 7

shows the strong variation and the formaLioa of an almost symmetric pattern

along the cylinder in the plane 0 = 0, while the variation at 0 = 900 is rather

weak. This pressure field explains the void observations of Millor 15 which show

a wavy distortion of the void in the plane 0 = 0 at high Reynolds numbers. The

free surface in these observations can be interpreted as a surface of constant total

pressure. The steep and opposite pressure gradients across the cylinder axis near

z /t/ = 0.25 and z /7 = 0.75 displace the void near these positions in opposite

directions along the diameter at 0 - - 150 .

Calculation of the Liquid Moments

Conservation of angular mnomentim for the steady flow in a control volutme

V with surface S rotating with constant rate Q2 about. a fixed axis requires

M + f (r X F) dS r x r(2f 1x v)pd V
S V'

+ f r x In x(n xr)!pdV + f (r X v)/,(v d S) (15)
V S

where trhe velocity v is mea.5ured relative to the aeroballktie frarie. On the left-
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hand side, M is the resultant torque on the control volume,'r is the position vec-

tor, and F the stress acting on the cylinder. The presence and meaning of cer-

tain terms depend on the choice of the control volume. The surface integral on

the right-hand side of Eq. (15) vanishes if the surface of the control volume is

closed.

For ease of practical application, we express the moment

M = (M, , My, M, ) in terms of cartesian components which provide yaw, pitch,

and roll moment, respectively. Analogue to Eq. (1) we decompose the moments

into

M =Mr+Md (16)

where Mr corresponds to the pure rigid-body motion whle Md originates from

the deviation velocity and pressure. For the cylindrical control volume, the

rigid-body rotation causes only a pitch component

IV,=27r ± e 1 2/2)]2 (17)

while M Mr =-- 0. Note that M is dimensionless; the reference moment is

pa aw 2.

The evaluation of the components of Md bears some ambiguity that can be

exploited for advantages. Previous computational work 3, 4, 5, 6 employezi a con-

trol volume consisting of an "empty" closed cylinder with only the pressure and

stresses acting on the inside surface. In this case, the right hand side of Eqý (15)

vanishes and the moments are obtained from the stresses F at the inside wall of

the control volume. Here, we use a different choice that bears great advantages

especially for computational work.

We consider a control volume consisting of a solid cylindrical surface com-
pletely enclosing the liquid. The moment calculation for this "full" control I
volume rests on the relation

Md - f r X(202 xvd)pdV (IS) j
V

'sing analytical relations derived by Rosenblat et al., 6 the components of Md

A

Appendix 73

I



can be shown to take the form

M• d - Ic osO (19,.)I

My = I 2 sinO - I 3 cosO (19b)

Md = 14 sin9 (19c)

where

11 I 4  f z(vcosb - vesinO)rdrd0dz (20a)
V

22
12 --- f vsor2drd qdz (?0c')

V

13= -fvsino r 2 drd 0 dz (20c)

Finally, we obtain the moments in the form

M~~d 2 2r I1 2cs r ~z(1r
tan0 f f f r2 cosedrd¢:dz (21f)

t7 2 1r 1 + 2 7r I12b
Md Ef f f vOr2 drdqedz + -- (2inbdrd Sdz-•0 o tan---0 f f f vz ~ er d (22b

YP70 0 an-, 7 00

Mzd Mz tano (22c)

The volume integral approach thus leads to handy expressions which involve only

the radial and azimuthal velocity components. Integration over d 0 reduces the

requirements in fact to the knowledge of the aperiodic component of v¢ and the

simply periodic components of vZ. Therefore, the volume approach can also be

applied to the analytical results given above and provides yaw and pitch

moments without explicit knowledge of the pressure. I
Results for the Liquid Moments

',Vhile velocity and pressure fields are primarily of basic fluid mechanicalf

interest, the practical need for the moments dictates the measure for efficiency of

the code. The moments derived from the volume approach and the surface )

I
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approach applied to the same spectral solutions are shown in Tables 1 and 2,

respectively. The Reynolds number Re = 20 is in the range of maximum despin

moment M•.

It is obvious that the volume approach provides results of superior quality

and more rapid convergence. The required (absolute) accuracy of 10-3 for

engineering applications can be achieved with the low truncation K =4,

L = 3, M = 4. This accuracy has to be seen in the light of considerable uncer-

tainty in the moments governing the exterior aerodynamics of the projectil. As

a rule of thumb, an increase in the aspect ratio requires additional expansion

functions in axial direction while increasing Reynolds number requires higher

resolution in both radial and axial direction.

Figure 8 compares the calculated roll moments for a wide range of Reynolds

numbers with the experimental results of Miller 2 and with computational

results. 4, 6 The deviation of the results of the Sandia code 4 is caused by using

inappropriate formulas for the moments in the nutating coordinate system.7 The

agreement with the other computational data is good. Test runs with high reso-

lution suggest that the small difference from the results of Rosenblat et al. 6 is due

to lower resolution of the finite-element code in combination with the application

of the surface approach for the moments, The experiments were made in a range
of spin rates wa between 2000 and 4000 rpm. While w -- 3000 rpm has been used
in Figure 8, assumption of a lower value would improve the comparison with

respect to the maximum values.

Figure 9 shows a similar comparison for the yaw and pitch moments. The

results of the Sandia code are suppressed since they suffer from a dimensional

inconsistency. 7 While the agreement for the yaw moment at high Reynolds I
numbers is surprisingly good, the deviation in the pitch moment is likely to or!-

"ginafe from insufficient resolution of the steep pressure gradients. This effect of

diiscreization errors has been reduced in the spectral code by using the volume

approach for calculating the moments.
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Figure 10 shows the dependence of the yaw and pitch moments per unit

length (the roll moment is proportlonal to Xf, ) on the aspect ratio of the cylinder

and compares with results of the code written by Strikwerda & Nagel 5, 7 and the

analytical results for Y7 - oc. This diagram indicates that a reduction in the

overall liquid moments for a given fluid mass can be achieved by splitting the

cylindrical volume into slices or low aspect ratio.

Discussion

The codes previously in use may serve for establishing some basic results but

are too inefficient for routine applications. The finite-difference code developed at

Sandia Laboratories 3, rests on Chorin's method of artificial compressibility and

provides the steady solution at 11 X24 X21 grid points in r, 0, z-direction by

integrating over typically 104 to 8104 time steps, a task that requires 6 to 48

minutes of CPU time on a Cray-lS. The result consists of over 22,000 values of

the velocities v. , ve, v, and the pressure p at the grid points.

Strikwerda & Nagel 5 briefly describe a code using finite differences in radial

and axial direction and pseudospectral differencing In the azimuthal direction.

Nonuniform grids are introduced for increased resolution near the walls. The

difference equations are solved by an iterative method based on successive over-

relaxation. The computer time required is comparable to that of the Sandia

code. A thorough evaluation of the two codes is currently conducted at BRL. 7

The experience with the present version of the spectral code shows that high

performance can be achieved. The solution is obtained in semi-analytical form

with only N = 4K L JI (typically less than 500) numericai coefficients. This

low' data volume is e.,pecially attractive for storage and for communication with

remote suI(-rcoinputers. The code is very Nell suited for vectorization. since

practically ali CPU time is spent on constructing and so lving an ;dlg,.raic system.

Tithe co0h' demands larg,.r memory than other codles, becawt se 6-1-bit arithmetic is

highly recorminucu:ded 'or spectral metliods in general, and the algebraic systei-t

r.qmir-s ,(' 4 1) words of st oragv. A rim witlh N =- .500 rcquires athuil 2

%NbyvI(" of iuejiory and can rsilsl, he carrie:d out onl engin.lerilug work' t:liors
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within a few minutes, while moment calculations with N = 192 are a matter of

seconds. Since the memory requirement is acceptable even if higher resolution is

desired, the method applied here is a viable alternptive in numerous other fluid

mechanical problem3. The ability to obtain accurate solutions for the steady

problem directly from (large) algebraic systems bears valuable potential to answer

the question whether the steady solution is stable, and allows analysis of

unsteady motions with implicit time-steppling. The design of a reliable code for

the unsteady problem can take profit from the knowledge of the eigenvalue spec-

trum for small unsteady disturbances of the stead: flow.

While the calculation of velocity and pressure fields provides insight into the

physics of the flow, the practical interest in the moments for the quasi-steadily

changing parameters in flight simulations can be satisfied with modest amounts

of computer time. This is due to using a modified Newton method which updates

the Jacobian only when demanded by deteriorating convergence.

In general, the volume approach provides much more accurate results than

the surface approach. This improvement is due to the additional smoothing of

fluctuating data by integrating over three instead of two space directions and to

usmnc fewer, less fluctuating, and more accurate input data. The absence of v, in

the volume formulation is welcome. This velocity component is small over most

ol the cylinder length but oscillatory in the radial direction 10 with considerable

gradients near the wall. Near the end walls, v, is of the same order as v. with

steep gradients toward the end wall. Inspection of the velocity plots of Vaughn

et al.4 indicates that these gradients were difficult to resolve by the finite

difference method. The aperiodic component of vo is a relatively small streaming

term of smooth and almost uniform behavior along the cylinder axis. The large

azimuthally periodic comIponreiiUt of vo near the end walls do not affect the

moniiezt calculation.

Probably the greatest advantage of the volume formulation is the absence of

the pressure from the morrierit equations. This property favors the use of

prc-su re-fre.e sets of basic' equations, e. g. in terms of vorti.i ty or vector potential.
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The smaller number of dependent variables can be exploited for further increas-

ing the efficiency. Even in natural variable formulations, the pressure is difficult

to obtain with high accuracy because of the invalidity of the equations in the

joints of the flat end walls to the cylindrical side wall. As shown in Figure 3, the

pressure may assume extrema near the corners and, therefore, inaccuracies in this

iegion may strongly influence yaw and pitch moment. In this context, it is

instructive to evaluate the convergence history of the artificial!y time-dependent

method implemented in the Sandia code. 3 'While the velocity rapidly reaches a

quasi-steady state, about 75% of the iterations are spent on improving the pres-

sure field. We estimate that by use of the volume approach equivalent or supe-

rior values for the moments could be obtained with less than 20% of the itera-

tions. It is worthwhile to note that the analytical results of Rosenblat et al.,G

and equations (19), (20) for the moments are valid for closed containers of more

general shape and thus can be used for other interior flow problems.

Our analytical and numerical tools allow quick estimates and efficient calcu-

latiori of accurate liquid moments. These results also suggest guide lines for the

suppression of the flight instability caused by the viscous-liquid payload. For a

given cavity and fluid, a reduction in the overall liquid moments can be achieved

in two ways. The first method is the split of the cylindrical volume into slices of

low ivsect ratio. The second way is the longitudinal split into k2 "straws" of

high aspect ratio k ri. The change of the radius reduces the Reynolds number

which may or may not be desirable. The nondimensional moment per straw

)-icreases due to the increasing aspect ratio. An essential reduction of the overall

moments, however, originates from the fact that the dimensional moments are

proportional to the fifth power of the radius. The dimensional factor is therefore

reduced by k- per straw or k 3 for ail straws together. As a raw est liw:,t(., lie

effectivuj rmomemts can be r'duced by a fýictor k- 2

/ ': ; : r.'ji ,I • ;
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CAPTIONS OF TABLES

Table 1. Volume approach for the moments at 17 = 4.368, r = .1667, 0 = 20,

Re z- 20.

Table 2. Surface approach for the moments at ir = 4.368, r = .1667, 6 = 20,

Re = 20.

CAPTIONS OF FIGURES

Figure 1. Definition sketch.

Figure 2. Vector plot of the axial and radial velocities in the planes € ,150

(left, scale 0.075) and 4 = 1350 (right, scale 0.0375) at Re 20 for z > 0.

Figure 3. Contour plot of the pressure field in the planes 0 = 450 (left) arnd and

= 135' (right) at Re = 20 for z > 0. Levels every 0.0025.

Figure 4. Vector plot of the azimuthal velocity v. in the center plane at = 0,

Re = 20. Scale 0.003.

Figure 5. Vector plot, of the axial and radial mean velocity vo for Re 20.

Scale 0.002.

Figure 6. Vector plot of the axial and radial velocities in the pla~ies 0 =

(left, scale 0.05) and o = 900 (right. scale 0.2) at Re = 300 for z > 0.

I,'igur. 7. Contonr plot of the presure field in the planes o = 0' (left) and

0.-. 9' fright) at fe = 300 for z > 0. Le- '- very 0.005.

Figuire 8. Roll moment .\[, ,s. Pcvnolds nuit er R; for ?I = .1.368,
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7 = 0.16667, and 0 = 20 . Comparison with numerical and experimental data.

Figure 9. Yaw moment M. and pitch moment . vs. Reynolds number Re for

71 =-: 4.368, 7 = 0.16667, and 6 = 200 . Comparison with numerical data.

Figure 10. Yaw moment M, and pitch moment M. per unit length vs. aspect

ratio 7q at Re = 10, -r = 0.16667, and 9 = 2'. Comparison of present numeri-

cal results with analytical results for tj -- oo and data obtained by Nusca with

Strikwerda's code.
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Table 1. Volume approach for the moments at ?7 -- 4.368, r = .1667, 0 20,

Re 20.

K L M Aif MY M

3 3 3 0.08305 0.07475 0.03023

4 3 4 0.08260 0.0733.1 0.03006

5 3 5 0.08300 0.07332 0.03021

5 3 6 0.08317 0.07353 0.03027

6 3 5 0.08300 0.07332 0.03021

6 3 6 0.08317 0.07353 0.03027

4 5 4 0.08280 0.07353 0.03014

5 5 5 0.08322 0.0735.5 0.03029

6 5 6 0.083.10 0.07374 0.03035

6 5 8 0.08335 0.07385 0.03034
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Table 2. Surface approach for the moments at i? = 4.368, r .1667, 0 = 20,

Re- 20.

K L NI Mlf My Al

3 3 3 0.07394 0.09396 0.03308

4 3 4 0.07247 0.08133 0.02992

5 3 ' 0.07004 0.07291 0.03024

5 3 6 0.08178 0.07039 0.03028

6 3 5 0.07864 0.07354 0.03023

6 3 6 0.08137 0.07115 0.03027

4 5 4 0.07289 0.08354 0.02999

5 5 5 0.07894 0.07700 0.03032

6 5 6 0.08152 0.07491 0.03036

6 5 8 0.08289 0.07415 0.03034
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Figure 1. Definition sketch.
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Figure 2. Vector plot of the axial and radial velocities in the planes 4, = 450

(left, scale 0.075) and ¢ 1350 (right, scale 0.0375) at Re 20 for z > 0.
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Figure 3. Contour plot of the pressure field in the planes 0 = 45' (left) and and

= 1350 (right) at ReI 20 for z > 0. Levels ever-, 0.0025.
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Figure 4. Vector plot of the azimuthal velocity vo in the center plane at z 0,

Re 20. Scale 0.003.
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Figure 5. Vector plot of the axial and radial mean velocity vo for Re 20.

Scale 0.002.
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Figure 6. Vector plot of the axial and radial velocities in the planes -0

(left, scale 0.05) and € 90' (right, scale 0.2) at Re 300 for z > 0.
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Figure 7d. Contour plot of the pressure field in the planes ~ 0' (left) and

90' (right) at Re 300 for z > 0. Levcl3 every 0.005.
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Figure 8. Roll moment M. vs. Reynolds number Re for 71 =•4.368,

r =- 0.16667, and 0 200 . Comparison with numerical and experimental data.

.04

Spectral Code
"M Rosenblat et al.
+ Vaughn et al.
CD Miller. exp.

0 +1

I4'L

++

00

-2 -1 0 1 2 3

log (Re)

Appendix F 93



Figure 9. Yaw moment M, and pitch moment Mf vs. Reynolds number Re for

4.368, 7 0.16667, and 0 - 200. Comparison with numerical data.
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Fig;ure 10. Yaw moment M,, and pitch moment M. per unit length vs. a.~iect

ratio 17 at Re = 10, r = 0.1666"d, and 0 = 2'0. (Cnmparlson of present numeri-

cal results with analytical results for 17 -~ oc and data obtained by Nusca with

Strikwerda's code.
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Abstract prone to crrors, and the necessary approximations
The use of distributed workstations instead uf may blur the quantitative aspects, Only in rare cases

mainframes has enabled us to adapt the software to can closcd-form solutions be found. Usually, analyti-
our needs and to implement symbolic manipulation cal work reduces the partial differential equations to
into our research envirorunent. Our applications are ordinary differential equations which can be solved
primarily the simplification and verification of tedious numerical'y with relative ease.
manual procedures rather ihan solving complete prob- In our strive for quniiitative information and
lems in symbolic form. We report our experience insight, we have successfully applied a combination
using Macsyrma for !he derivation, coding, and docu- of analytical modeling and spectral methods for the
mentation of complex equations, development of numerical work. Spetral methods have very attrac-
improved algorithms for spectral methods, and gen- dve numerical properties I and are closely related to
eration of Fortran code to provide test data. Example the mathematical formulation of the problem. Incon-
problems are in the area of viscous flow computation sistencies in the approach do not remain localized,
and hydrodynamic stability. e.g. to a tew grid points in a finite-difference solution,

but affect the overall solution. The sensitivity of
1. Introduction spectral methods to even small errors - in the frrmu-

The exploration of fluid dynamic phenomena lation or due to round-off - is frustrating for the
and their underlying mechanisms often requires solv- beginner but a welcome indicator for the experienced
ing the complex equations of motion in relatively sim- user. Often, the inconsistencies arise from inappropri-
pc geometry. The arsenal of tools for solution ranges ate treatment of singularities, e.g. comers of the
from brute-force computation to 'cophisticated asymp- domain, from errors in equations or code, or from
totic methods cach of which has merits and shortcom- loss of significant digits that may remain undetected
ings- Pure conputation with finite-differcnce o- in other calculations. The successful 01f0or ,11 dehue-

finite-element methods is usually the shortest and ging the whole approach is rewarded with very
inost direct route to results but leaves the investigator pleasant pcrfornance of the method.
with v,.,t amounts of ,-ita for tedious postprocessing. The development aod implelnentation of correct
Comp•jtatinn and ,',stprocessing must be repeated for equations can bc a task of unexpected difficulty.
cvery new set of I ararneters. Analytical mcthod:s, on Repetition of derivations and coding is tiniý-
the other end. ofien pnrvide generic results that are consuming but not fail-safe. 11c a posterioi: check
easy to understand and clearly reveal the role of of results with existing woik or intuition is
, Dcrivation of analytical results for cot'n- ii.,;uflicicit for vcrilfcation of research ciOýmputition,.
I:t- ~li:iJ.P-,, ho)\,e t.r, ,,.al .. ti1111Odls-uni filia W e ha,,c, tti'ic'hrtc, rin jxr.rlicd s lirb K rnunipuili.
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tion with Macsyma into our studies on linear and non- cale preas of appliCation for symbolic Manipulation,
linear stability of shear flows and on viscous rotating
flows. 2. The Flow in a Spinning and Nutating Cylinder

In our applications, Macsyma has been used less Calculation of the flow in, a spinning and nutat-
for problem solving than for reproducing and verify- ing cylinder is a prototype problem arising in the
ing the steps of the analysis. Like most computer design of spin-stabilized rockets or shells with liquid
tools, Macsyma requires major learning efforts, while payloads. Interest is in the moments exerted by the
tutorial exarnples for a specific step in a practical internal fluid motion and their detrimental effect on
application are hard to find. With increasing skills, flight stability. Since the angle between spin axis and
however, the efficiency in performing symbolic mani- trajectory is small and the rate of nutation is smaller
pulation dramatically increases. The gain in overall than the spin rate, a small diniensionless parameter C
efficiency is high enough to consider new classes of can be identified that governs the deviation of the
problems and new approaches that would hardly be fluid motion from rigid-body rotrtion., This viscous
feasible without syi.'bolie manipulation. We have secondary flow in the cylinder and the coupling with
also experienced that this tool trains the user to inviscid inertial waves arc apalyzed using a perturba-
clearly formulate the steps of the analysis and to tion method for long cylinders, an expansion in spa-
"play" with alternatives which at times provide new tial eigenfunctions, and a Navier-Stokes solver based
insight into the structure of the problem and stimulate on a spectral collocation method. All these methods
more elegant formulations, rest on the continuity equations and momentum equa-

tions for the reduced pressure and the secondary velo-
I. The Computational Environment cities (deviation from rigid-body motion). The equa-

We have Macsyma Version 309.6 installed on a tions are written in cylindriWal coordinates with
Sun 3/180S with 575MB disk. This server is con- respect to a rotating coordinate system 4 In this sy's-
nected to Ethernet and to the campus-wide Sonnet tern, the secondary motion appears steady and forced
fiber-optic link. Therefore, we can access Macsyma by an azimuthally periodic force of oder O(t).
locally and remotely frofn other workstations or dial This set of equations, the characteristics of the
in through the university's Micom lines from home. variables (scalar, real), dependcncies, and frequent!y
The system is currently used by about ten faculty and occuring operators can be defined once and saved in a
graduate students with little or no prior experience in file. The branching into different approaches suggests
Lisp or any sy•mbolic manipulators. Some members a hierarchical file structure as in Unix. We found it
of this group have worked with Unix-based worksta- advantageous - especially in the learning phase - to
tions and superminis for the past five years and had a develop segments of this hierarchy interactively and
short encounter with Macsyma on a Masscomp to save the successful commands in relatively small
workstation with insufficient disk space. The files which terminate with cleanup commands (kilo.
Nlacsyma software is riot under maintenance, there- This mode is very conveniently executed on multi-
fore, tOe reference manual 2 and users guide 3 are the window systems with easy scroll and screen-to-screen
only common sourccs of information for self-study, copy. The proper sequence of files to be loaded can
,\lrhough our applications vary over a wide range of be specified in a master file. i
topics in fluid mechanics and heat transfer, we have
not vct fully explored the capabilities of Macsyma. 2.1 Perturbation Analysis for Long Cylinders

Our primary applicaiiois of symbolic manipula- For a sufficiently long cylinder, the soluiipn can
tion are in lhe following areas: be assumed independent of the axial direction'and the

1) Derivation of equations boundary conditions on the end walls can be

K) GCenration of Fortran code neglected. The essential steps of the perturbation
expansion arc: specify axial gradients to be zero (gra.

(¾) (Comparison and selection of algorithms de]), expand velocities and pressure in a truncated
(4i DocurncnrtatiOn power series in F (sum), expand azimuthally in a corn-

e' nut. i. e n 1c followin, scctions the major s plcx Fourier series, and substitute the double sum into
.in, sormc sample problems and indi- thc basic ecquations. Extraction of tenns in the n th

power of c and like exponentials eCL' in the azimu-
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thai variable ý with ratcoeff(ev(...)) provides ordinary the order of differentiation. The result can be con-
differential equations for the coefficient functions verted to Fortran and inserted into a generic Fortran
which depend on the radial variable r. This pre framework. The Macsynma output usually requires
cedure shows an interesting pattern, since numerous some editing for inconsistencies (e.g. sqrt(2)) with our
equations are identically satisfied: odd n are associ- compiler. After this editing and modifications to
ated with odd m and contribute only to the axial vclo- account for the specific parameters of the problem,
city component, while even n are associaied with printout, etc., the spectral code is ready to run, pro-
even m and contribute to rdial and azimuthal veloci- vided the array H(j,k,n) contains the required data.
tics and the pressure. Witit homogeneous boundary These data are generated by one of a number of
conditions on the cylinder wall and proper conditions problem-independent subroutines in our individual
on the axis, the lowest-order axial velocity component library. Different versions account for different sym-
can be obtained in closed form and expressed in terms metrics, intervals, variable transformations, and the
of the modified Bessel function Ii(ar), where specific choice of collocation points (see section 4).
(1 = iRe and Re is the Reynolds number. The mean
velocity (m even) 's of order 0 (c2) and consists only 2.2 Volume Integration of the Moments
of an azimuthal component. This component is asso- Given the deviation velocities and reduced pres-
ciated with a viscous roll moment on the cylinder, sure, the calculation of the moments exerted by the

We have manually aevelor'd a closed-form fluid on the cylinder is a formidable task. In previous
solution in terms of Bessel functions for the periodic finite-difference codes, these moments are obtained by
second-orde, terms.5 We have not yet reproduced integrating normal and tangential stress components
this result with Macsyma. The effort to obtain over the surface of the cylinder. Unfortunately, the
closed-form solutions increases; dramatically with the input data - surface pressure and velocity gradients -
order. Therefore, we solve for the terms of order are not very accurate. In addition, this procedure
n > 2 by use of a spectral collocation method. The obtains the moments as the small difference of large
expansion functions are linear combinations of even numbers (pressure and viscous contribution) and con-
and odd Chebyshcv polynomials in the interval sequently the results suffer from insufficient resolu-
0 < r < 1 that satisfy the boundary conditions and tion.
conditions at r = 0. The case n = 2 serves for com- With some analytical effort, the moments can be
panson with the closed-form solutions. obtained by integrating over the volume of the

Given the (linear) differential equa.,tion Lf -- g, cylinder. The final equations given by Herbert & Li 6
where f = f (x) and g = g (x) and the expansion show that neither the pressure nor derivatives of the
functions hk(x), spectral collocation directly leads to a velocity are required; only the mean azimuthal velo-
linear algebraic system Ma = g.t The vector g con- city and the first Fourier mode (-e') of the axial
sists of the values g(x ) at the collocation points x1 . veloc:fy need to be known. The expressions do not
In our work, the vector a consists of the expansion involve small differences of comparable terms.
cocflicicluis ak of f with respect to hk(x), and The original deivations of the moment equa-
NM = (tnjk) is the matrix representation of the tions by Rihua Li consumed weeks of intense work.
differential npcratnr applied to hk (cnlumn,ý) at xj The smaller part of this time, obviously, served tn
(rows). The key to solving the given differential find the proper steps of the analysis. The remainder
cquatior is to accuratcly dchinc the elements rni1 of was used to derive and verify the detailed cquations
the matrix NI and the right-hand side g. The algc- and to insert and correctly integrate the spectral
braic system can then be solved with standard pro- representation of the velocity components. Since
ccdurcs. Chebyshcv polynomials arc closely related to powers

With Ma%1srna, it is straightforward to replace of the variable x as well as to trigonometric functions
the right hand side g by a vector form g In I and to do of the transformed variable 0 = cos-Ix, the spectral
tlic same for the r dependent coefficients of the moment equations give the result in an easy-to-
di fI[crcital equiation What remains then, is to replace interpret semi-analytical form. Meanwhile, wc have
dti]- ff r n ) by H 1],k n 1, n.! 0 , where j indicates repeated 1.i's derivation wkith Nlacsynia in a few
the ,W.h•)cl oirl point, k the cxpaol,ion function, and n hours.
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2.3 Expansion in Spatial Eigenfunctions The expansion in spatial eigenfunctions is very
For cylinders with smaller aspect ratios, above interesting from a fluid dynamic point of view since it

pcr~urbation solution deteriorates- The problem is clearly reveals inertial-wave type functions and the
then to solve the basic equations for a finite cylinder. formation of boundary layers at higher Reynolds
While prcvious finite-difference codes suffer from numbers. tHowever, the evaluations of convergence
insuflicicnt resolution and lack of convergence at and computational demand lead to the conclusion that
higher Reynolds numbers, the problem appears to be spatial eigenfunction expansions may not be the
well suited for a sxectral approach. Two alternatives optimum approach. Reliable calculation of the roots
to consider are: (1) spectral expansions in generic of the characteristic equations in the large range of
functions, with ayimut'al Fourier series, radial and Reynolds numbers (10-1 5 Re •_ 106, say) is numeri-
axial series in combinations of Chcbvshev polynomi- cally very demanding and can only be achieved after
als (even or odd to satisfy thc. conditions at r = 0 and detailed studics on !he asymptotic form of the cigen-
to exploit the symmetries of the problem), or (2) value spectnim. Symbolic manipulation of the equa.

cxpansion in azimutlial Fouricr scries and spatial tions and the ultimate solve command simplified this
cigenfunctions that can bxe obtained from the linear- task enormously. Currently, we obtain reliable and
ized problem. accurate results up to Reynolds numbers of the order

103. While we have mastered the calculation of theExpantsirens in spati al ci pt'riffuctions tO solve the .6

linear problem wcre pursued by Hiall t al. 7 who cigenvalues up to Re - 5"106, more analytical refor-
dctermfircd the eigcnfurnctiols in a separate step by mulation is required to avoid floating point overflows
numericaindthe in ofu hmctineous inoaseprateis y and loss of significant digits in the numerical solutionnumerical integration of homogeneous ordinary foth epasncofcits Bsdon xsig

differential equations in the axial variable z. The for the expansion coefficients. Based on existing
batch files, this work will he done in an interactivethree-dimensional boundary, value problem reduces in

this way to the one-dimensional problem of satisfying mode with Macsyma alternating with sketching new

the boundary condifions art he end wall with a collo- attempts on the note pad.

cation or lcast square method. 2.4 Spectral Navier-Stokes Solution
L.i & Herbert 8 have developed a single partial From previous work we have leared that the

differential equation for the spatial eigcnfunctions that solution of the cylinder problem is essentially
can be solved by separation of variables. The general
solution consists of the product of cosines of complex governed by linearized equations plus nonlinearcorrctiions that increase with &. Linearization can be
arguments in the axial and modified Bessel function.% performed in different ways. The first is a lineariza.
of complex argumient, in the radial direction. Eige- tion in e. A seCond linear sy;tern can be obtained by
solutions can be found by determining the constant of linearization of the velocity components and pressure
separation from a characteristic system of cquations. solution which may be identicallyabo~ut some knownsotinwih aybidtilyThe remaining one-dimensional problem here is to zTpro. The latter procedure is very efficient if the solu-satisly itlec rathcr complicated boundary conditions don is sought for a densely spaced scquence of
at the cylinder wall. With the numerical expansion parameter combinations as in flight simulations.
coefficients determincd by collocation or least square
Incitlud, the roriuricii of the linear approaL:h are The algebraic form of the equations is obtained
obtained in scmi-arjalvyical form. by use of spectral collocation with generic functions.6

Instead of a single array tt(j,k.n) above, various"hue r t'i,'s a•rid ile'rival ions for this approach fill a
filte( ol wt:ll ove' 2(K_ pacs. The results are still preset arrays 1t,. t1,0. 1/,, are required, where i indi-

uuflj:i I htl Cii e 1 SIT13' error was dctccted in the cates the dependent variables. The spectr.! form of

final resmilt. for thc niojuicrts,. Rcdcrivaticn of the the basic equations is not difficult to codi; manually
but - with the Macsyma input available - can becomrplelte" fo)rnulat ion with Miacsyrna by a relatively

unpc~lri(I•'l stJ('cli rt'tinired two days and showed quickly generated per computer. The generic frame-work reflects the increased number of dimensions and(onee siwi em moriinr the rim arual derivation that led to)na- signleitor lin(tit smim derivationofw ui that led to vanables as well as the nonlinear nature of the pro.L-tMImCid (T f 11c 11ot dMiM.1l (If IjItAi0edlie c Art tcrn: the dimension of the matrix increases to the pro-rcJ Jil •)rI it-k I ( Ji t;. e, "c duct of the numbcrs of expansion functions in r, *, z
times fout (variablcs). The li•,ar algchraic system

1 01



takes the form Mva;. = gi that is obtained by applying These steps require manipulations of derivatives of
Newton's method (p = v+l) or the modified the basic equations and subsequent substitutions. We
Newton's method (ji > v+l). In the latter case, the .live made m".ch progress in performing these steps
Jacobian Mv is only updated when indicated by with Macsyma although elegant commands for some
deteriorating rate of convergence. The solution pro- detailed steps have not yet been found. In our pro-
cedure starts with v = 0, 4. = 1 from zero or from a cedures, we prevent Macsyma from evaluating
previously obtained solution at neighboring parame- differentiations to maintain differential equations in
tcrs. Once the iterati,,c solution converges, the the original variables (not their derivatives). Since
moments are calculated from volume integrals. Macsyma distinguishes, e.g. between (u,), and (u,•.,

in the Reynolds number range covered by previ- a formal substitution for u, and subsequent evaluation
ous finite-diftcrence codes, accurate moments can be ev(%,diff) does not always provide the result we
obtaincd with 4 x 3 x 4 expansion functions in desire. Our skills, thougn, are still open to improve-
r, 4, z, respectively, and a matrix dimension of 192. ment.
The measured computer times arc smaller than 10-3 A particular example for the fruitful application
times those required by finite-difference codes. These of symbolic manipulation is our study of nonlinear
'hree-orders-of-magnitudc savings in computing time secondary instability in boundary layers. 9 .10 In spite
and cost permit routine application of the spectral of thorough checks of equations and Fortran code, we
ci•de in flight simulations performed for design pur- ended up with two independent codes that provided
pose which was not possible with previous codes. The different results. In view of some ambiguity in cer-
cost per solution increases with the Reynolds number tain substitutions and arrangement of te'ms, we were
but is still less than with eigenfunction expansions at unable to find the source of the discrepancy and to
Re z 103 and is for the nonlinear result, not the linear decide for either one of the codes to be correct.
approximation. For higher Rc(',nolds numbers, While we were caught for months in this dilemma
methods based on the boundary-layer approximation and faced a third and fourth pass through the analysis,
are effcctivc although their accuracy at Reynolds Macsyma became available for MC68C00-based
numbers of the order 103 remains to be verified, workstations. Although we had to install and run the

The overall design of the spectral code and the softwaie on a workstation with insufficient disk space
volume approach to the calculation of moments was and had to learn the use of Macsyma from the very
made possible only by good understanding and basics, the correct code was obtained within a few
intense exploitation of the analytical properties of the weeks. The printout of the equations and detailed
problem. Unavailability of any symbolic manipulator output from this code enabled correction of the manu-
in our earlier wmputer environment had forced us to ally derived equations and of the faster hand-written
do most of the work manually. In retrospect, sym- code shortly after.
bolic manipulation had easily saved one year of Weaponed with the new capabilities, we
qualified labor on this problem alone. We have pur- currently implement non-parallel effects and the
chased the license for Macsyma for $1,800 (for cdu- streamwise variations of the disturbances into the
cational institutions), to be shared by various users - a analysis. Besides the creation of the matrices and
worthwhile investment. vector-; for the algebraic systems, syrabolic manipula-

tion is used to analyze asymptotic propcrties of the
3. llydrodynamic Stability solutions, e.g. at large distance from the wall. Out-

Thc situation in our studies of hydrodynamic side the boundary layer, the cocflicicnts of the
instability and transition in shear flows is quite similar differential cquations arc constant. The asymptotic
to th1t aLxve., lDcomposition of the velocity and solution can, therefore, be obtained in closed form.
pressure fields into various comlx)ncnts, Fourier Recently, we discovered that the existing theories of
dccominpoitiou In tWo spatial directions, and extraction stability in non-parallel flows use an incorrect form o."
of lincarizcd or nonlinear equations for single com- these asymptotic solutions.

ilx)ncnt. are tcdious tasks. Even more tedious are the The complexity of the equations and difficulties
comnin•, stcpS of eliminating tilc pressure by taing of the code verification markedly increase when we
the curl of dic niomentum equations and eliminating change from the previous incompressible problems to
oic of Oic vcJo( ii) c(nl[foienlits by USe of contimuuity. similar pioblcms in supersonic and h)pcrsonic flows.
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The main reasons are the increased number of vari- can be easily studied with Macsyma by obtaining first
ables and functional relations, e.g. between viscosity the accurate result and then the result of bigfioat
and temperature (or species distribution). In joint operations with different scttings of fpprec, the
work with Dr. G. Erlebacher at NASA Langley, we desired precision. It is also easy to see that a numeri-
performed the first critical step: to develop and verify cally more advantageous form of the matrix elements
a spectral code for compressible stability studies. The can be obtained by substituting k = 1 + j:
verification used Macsynia to generate the matrix ele- (I + )[14(12 - 8) + jl3(612 - 32)
mcnts of the high-dimensional linear eigenvalue prob-
lein. With little effort, the effect of approximations + (12j212 + 8j l)(1) - 4) + 1612 + 32jl]

cipplo)c,• in other codes could be studied and a small This substitution is a trivial symbolic step but the
CeTOr in another available code discovered, effect of round-off errors is practically removed.

Over time, the use of symbolic manipulation Every step in the subroutines for initializing the
pi0.JucCS a variety of relatively small input files that matrices Il(j,k,n) has been carefully selected to
are wonh-hile saving and developing into an archive minimize round-off errors. Calculations of data for the
of procedures comparable to a subroutine library, sequence of trigonometric functions or Chebyshev
lmproved versions can be created as skills develop, polynomials are often recursive and bear the danger
Nc,w projects can take profit of this archive of rcoc- of dramatic error propagation. Error analyses in the
curing sets of equations or formal manipulations mak- literature and comparison of results for different
hg the application of Macsyma increasingly efficient. floating-point precision were earlier used as criteria.

More recently, these studies have been repeated with
4. Algorithms for Spectral Methods Macsyma, although no improvements were achieved.

While thc foregoing applications were primarily Accuracy of the basic subroutines has been verified
concecrnd with the derivation of error-free equations for up to 180 expansion functions. For larger
and codc3, therc is a wealth of algorithms that are numbers of functions (which are irrelevant for our
mathematically correct but useless for numerical purpose), round-off errors slowly creep in.
aprlications - often because of the finite word length
fo, handling numbers in a computer. The finite word 5. Documentation
length and round-off errors are of particular concer, Availability of workstations and virtually unlim-
in context with spectral mcthods and their sensitivity ited access to a computer (and laser printer) at no
to small errors. It is inevitable to secure accurate nominal charge has modified our mode of operation
numerical results, especially for those subroutines that over the past few years. Besides program develop-
produce the problem-independent spectral data such as ment and computation, the computer also serves for
the matrices H(j,k,n) mentioned above, documentation and as a "note book." While docu-

An early example of a numerical pitfall with mentation earlier involved piles of scratch notes, pro-
speci-rJl methods is associated with the first spectral gram listings, and results before the first draft of a
solution of the Orr-Sommcrfcld equation of the hydro- publication, we usually begin this draft before the first
d(lnamic stability theory by Orszag.11 This wotk line of coding. The use of Unix has led us to still
cmiiploycd the tau method instead of collocation but adhere to troff as the common typesetting system
res,,s on matrices similar to H(j,kn) to express the (although TeX is available). With the typese:: true
dcrivativcs of the expansion finctions in terms of command, inmtcnnediate steps and results of our
expansion functions. For the fourth derivative, the Macsyma scripts can be directly converted to eqn I
nialmix clmcntns take the form troff form for inclusion in the descriptive text. For

A.[ k2(k 2 - 4)2 - 3j 2k4 + 3j 4k 2_.] 2Q.2 _ 4)2] lengthy expressions, the Macsyma output frequently
requires some manual modification. The short nota-

[or j z k, the result of evaluating this expression tion of the scripts also suggests global redefinition of
ý'iti 32-bit floating point arithmetic deteriorates the quantities for troff output. The printout of the
rapidly for j, k > 25, as shown by Orszag's results Macsyma batch script provides all the details of the
for thc cigctivalucs of the Orr-Sommerfeld equaton. dcrivaji•&n- The dr-aft can be extended as the work
"ilic ol, iou, rca-,oi; is tie small difference bctween prgre,,scs and lro•ildcs, an umiambiguous description
th0 I:iri.c nutnlx×is k(' and it'. Te'Ii effect of round-off of the equation: used in 0lw computer codes Convcr-
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sion to a publication requires major editing, more text, 3. Computer Aided Mathematics Group,
fewer equations, inclusion of the results, etc. The "Macsyma Users Guide," Document No.
procedure prevents, however, the discrepancies SM10500040.0, Syrnbolics, Inc., 1987.
between what has been done and what has been pub- 4. Th. Herbert, "Viscous fluid motion in a spin-
fished. Symbolic manipulation serves here to save ning and nutating cylinder." J. Fluid Mech., vol.
tedious typing of equations and to reduce sources of 167, pp. 181-198, 1986.
error. 5. Th. Herbert, R. Li, and S. D. Greco, "Perturba-
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research problems. We still have to develop the ideas 6. Th. Herbert and R. Li. "Numerical study of the
and work out the details of the analysis. However,
the description of the various steps can be sketchy, flow iapin and n7ta4ing cylindero
and the accurate formulation for documentation and AIAA Pap .
computer code can be obtained by symbolic manipu- A A Joural.
lation. Macsyrna can also be used as a powerful and 7. P. Hall, R. Sedney. and N. Gerber, 'Fluid
effici,:nt "calculator" to test and impmvc numerical motion in a spinning, coning cylinder via spatial
,ilg(rittigs, eigenfunction expansions," Ballistic Research

Laboratory. Technical Report BRL-TR-28 13,
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solutions to problems that were not feasible without ing cylinder," J. Fluid Mech., 1988. In prepara-

their use. Learning and mastering these tools require tion.

st)miO elfort, but their use educates us to more 9. Th. Herbert, "Secondary instability of boundary
rigorous!, formulate ideas and relieves us from time- layers," Ann. Rev. Fluid Mech., vol. 20, pp.
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ABSTRACT

The r-noments exerted by the fluid motion in liquid payloads can jeopardize the stable flight of spin-
stabilized projectiles. These moments can be computed with various Navier-Stokes codes for
sufficiently small Reynolds numbers. For the linearized problem, Hall. Sedney, and Gerber (1987)
have proposed an expansion in radial eigenfunctions that could extend the range of Reynolds
numbers. The need to determine eigenvalues and eigenfunctions numerically and the slow conver-
gence o," the expansion series, however, make this approach less efficient than solving the Navier-
Stokes equations with spectral methods. We have derived a new formulation of the linear problem
that permits closed-form solutions for radial or axial eigenfunctions and calculation of the eigenvalues
from a closed-form characteristic equation. The formulation is also suited for solution by spectral
methods at a fraction of the computational expense of other codes.

1. Introduction

Spin-stabilized projectiles with liquid payloads may experience severe flight i,sabilities. Two
types of liquid-induced instability are currently known. Both types are excited by td-., crning motion
of the projectile about the trajectory. 1 The first type is caused by rescnance with inertial waves at
critical frequencies t (ratios of coning rate n) to spin rate (o). This resonance is most prtnounccd for
low-viscosity liquid fills, i.e. at high Reynolds numbers, and depends sensitively on the cylinder's
aspect ratio T1. Thcoretical analysis of this instability usually involves the boundary-layer approxima-
tion and therefore provides design criteria for sufficiently large Reynolds numbers, Re > 1000, say.
Analysis bascd on the Navier-Stokes equations 2 shows, however, that resonance with inertial wavcs
inay scvcrely influence the liquid moments at Reynolds numbers as low as Re Z 100. (We define the
Reynolds number by Re = p6) aI/V, where p is the density, a the radius of the cylindrical cavity, and
It the viscosity.) The second type of instability is of viscous nature and is most pronounced at low
and medium Reynolds numbers for a wide range of aspect ratios and frcqucncies. This instability is
charactenzcd by a negative roll moment that opposes the spinning motion of the projectile.
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Theoretical analysis of the moments must be based on the Navier-Stokes equations or on a linearized
fonm of these equations if the nutation angles 0 are sufficiently small.

Since both types of instability appear simultaneously for a wide range of Reynolds numbers, it
would be highly desirable to develop a unified approach that bears potential for computing the
moments in a widc range. Moreover, the efficiency of the moment computation is crucial since flight
simulations requite either large tables for interpolation or frequent evaluation of the moments for
varying parametLers. 3

The analysis of Liquid moments for engineering design is based throughout on the quasi-steady
motion in t-he aeroballistic system. Direct solution of the three-dimensional nonlinear Navier-Stokes
problem typically requires 5 - 200 seconds per solution on today's workstations (Sun 3/140 FPA)
when using spectral methods.2 The time increases with the Reynolds number and the formation of
boundary layers. For practical purpose, the application ranges up to Re = 1000. For larger Reynolds
numbLrs, Re > 1000, the analysis rests on linearized equations and use of the boundary-layer approx-
jination.i At Re = O(I03). this approximation causes errors of about 10% 5 which decrease with
incrcasing' Re. Estimates of the moments for large aspect ratios 11 can be obtained at negligible cost
from a perturbation expansions in F = Tsin8. 6 Although this expansion is v;did for all Reynolds
numbers, :t disregards the finite length of the cylinder and hence excludes the effect of resonances
with inertial waves that depend on this length.

An altemauve appro3ch to solving the ' )west-order Ceuations of such an expansion has been
suggested by Hall. Sedney, and Gcert. (HSG). 7 This approach expands velocity components and
pressure in a ciries of products of trigonometric functions in axial direction and radial "eigenfunc-
tions" that satisfy homogeneous boundary conditions at the side wall. The coefficients of the series
can be found from the boundary conditions at the end wall by collocation or least squares methods.
Since only the linearized equations are solved, the HSG method provides yaw and roll moments but
the pitch moment requires solving for nonlinear terms. While the nonlinear extension may be a
matter of time, the shortcoming of the method is in the numerical determination of eigenvalues and
eigenfunctions. Practical application is restricted to the range up to Re = 1000 with CPUJ times of 10
- 1800 seconds per solution (VAX 8600).

For given parameters, the eigenvalues for the HSG expansion are obtained by iterative solution
of a sixth-order complex system of ordinary differential equations and are difficult to find. Good ini-
tial guesses are required for the iteration to converge. This problem is currently overcome by precal-
culating voluminous tables for interpolation of the initial estimates. The generation of these tables
requires approximately 40 hours CPU time on a Cray (Murphy 1988, personal communication).

In the following, we discuss an alternative to the HSG method. We first outline what quantities
arc needed for the calculation of the moments. We derive a single sixth-order partial differential
equation for the axial velocity component. This equation can be solved by using axial or radial
ei Ic- ,urIctiLAns. Irc Vigcnf[incionos are given in closed form and thc ciccnvalues are d.;,arnincd by
nurnencally solving a closcd-form characteristic equation. The partial diftercntial equation in two
,.arm b .10.:> .i m i:vddcs a nuv,, hlxiS [or clic lont solution by spectral ii-ethl.-.

2. Calculation of the Momnents

F(Hr the momcnits, we use cartesian coordinates x. y, z, where z is the spin (or cylinder) axis
wh:ic t is normal to z and coplanar with spin axis and nutation axis. Velocity and pressure fields,
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however, are more conveniently expressed in cylindrical coordinates r, 0, z. The nondimensional
moments can be obtained from the following relations: 8

T1 2n I

M.= 2f.acosO f V rv r 2 coso dr dodz, (1)

U, = M. tanO , (2)

M~ =2 cosO n 2 1 [v r2 sino dr do dz + £.9sinefT 2 1 fvor'dr dodz (3)
-rl -r 6

The reference moment is pco2a 5 and v = (v,, v#, v.) is the velocity vector of the deviation from
rigid-body motion. We represent the velocity field by the Fourier series

v(r, *. z) = (r v,(,, z) e , vM (u", vt, w,A) (4)
P1 - -

After performing the integrations over 4 in eqs. (1) and (3). it is obvious that the calculation of the
moments ,equires only the two Fourier componens wI(r, z) and vo(r, z). From perturbation
expansion in c = t sinO 6 it becomes immediately clear that w 1 is of order 0 (e) and hence the dom-
inating component directly related to the periodic forcing with , = - CcosO. In contrast, vO is an
aperiodic (streaming) component and hence of order 0(_ 2). Since c is small in cases of practical
interest, we concentrate in the following on determining wI from the linearized equations, leaving the
nonlinear corrections for future investigation.

3. Linearized Equations for the Axial Velocity
We write the Navier-Stokes equations for the deviation v, p from rigid-body motion in the

nutating (aeroballistic) coordinate system. 9 Linearization in c = (Qia) sin0 provides

V . v = 0, (5)

-v + 2r x V + Vp - -L 72v -2r, e, (6)
Re

where

V~ 1a I a2  a2 (72= a _+ (7)
ar2 r ar rZ a02 aZ22

and
' r (r,, -to, 1 +tz) . t. = - -sinOcosý . 't= -9sinOsino t. = -cosO (8)

We take 'he curl of the momentum equatlons (6) to obtain the vorticity equations that are free of the
pressure. We further take the curl of thc vorticity equations and apply ai/) - (IlRe)V 2 to the result-
ing equations. Since -, and -r are functions of ý only, we obtain the following homogeneous system
of partal differential equations for v:

.l V6v 2 a V4V+ a 2 V 24 (+ 2aVO9I 6 L L I - -V ,2V + 4(I + 'r') 2 =~ 0 . (9 )
Re 2  Re az2

We introduce the Fourier series (4) for v and the scaled variables
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w 1 =w, =qr , =qz , q=(l+i)4 Rk-e/2, (10)

and obtain for w

7 - 2 '4w + V - 4(l + ,- = 0 0(

where

72=2 C +2 (12)

Equation (11) is a single sixth-order partial differential equation for w(7, 1). The derivation of the
boundary conditions at the end walls and side wall is tedious and will be given elsewhere. The boun-
dary conditions at the end walls = ± qir ame

w = 0 LL 0 _21W + (2 Vl2 1)2W -13)

with

+ (14)
a?2  • a• ?2"

The boundary conditions at the side wall ? = q take the form

w = 0, (15a)

a -7w a3w 2W+ t)± 2(1 + z)0b
2(2(1)• (I 5b)

_~a! J, iq

2(l + _I[V 2 -?-7~ 2-21-- +- I ýLw
a? a? T32 P a pa

1 V2W + L74W + 2 ar2 3w 2(1 +,c,)
I • +'7. 1 2 ('+2) (15c)

r r 7 iq

Three of the boundary conditions (13), (15) contain only derivatives with respect to . while the
other Ltree involve derivatives in both variables. In thN iorm, the end-wall conditions are homogene-
ous while the axial velocity is forced by the side-waUl conditions (15b, c). The problem can also be

reformulated with inhomogeneous end-wall conditions and homogeneous conditions at the side wall
by subtracting from w a multiple of the closed-form solution

w,(T ) = - (16)
q I 1(q)

for the axial flow in an infinite cvlindcr.9 I1 denotes the modified Besscl function. The solution of
the problcm can be found by appropnatc numerical methods or by expansions in spatial eigenfunc-
dons. We note that the, latter method belongs to the class of spectral methods and is distinguished
from more generic methods by the special definition of the expansion functions.

109Appendix H



4. A Note on Spectral Solution with Chebyshev Series

Previous work 2 has shown that spectral methods with Chebyshev-Fourier-Chebyshev series in
r, o, z, respectively. are efficient in solving the Navier-Stokes equations in the four natural variables
v,. v , v,, and p. If K, L, M denote the degrees of freedom in the three space directions, then the
spectral solution requires determination of NNs = 4 x K x L x M coefficients for all natural vari-
ables. The no-slip boundary conditions are independent of the variables and can be implicitly satisfied
by using linear combinations of Chebyshev polynomials for the velocities.

Solving the governing equations for the single function w with Chebyshev-Chebyshev series in
T and 2, respectivcly, requires the determination of only N,, = (K + 2) x (M + 1) expansion
coefficients. The small increases in the degrees of freedom in P and , account for the three boun-
dary conditions that involve derivatives with respect to both variables, the other three conditions can
be implicitly satisfied. The projected CPU time for a single solution is reduced by the considerable
factor (Nz/NNs) 3  0.016/L'. These savings should permit spectral solutions for Reynolds numbers
well in excess of Re = 104.

The spectral code was suggested by M. Selmi and is currently in development. The high order
of diffemntiation demands extreme care for preventing round-off errors in the implementation.

5. Spatial Eigenfunctions

For brevity, we consider here only the case of axial eigenfunctions that satisfy the homogeneous
boundaiy conditions (13). We solve the governing equation (12) by separation of variables:

w(T, i) = F(?)G( ) , (17)

where

V2F = BF , F(T)=ll(;"-B) (18)

and B is a constant of separation. Equation (17) with

3
G(•) - c, cosa,2 (19)

is a solution of equation (12) if the three a, are roots of
46 ,) 2 2 (210)

a6 - (3B - 2)a4 +[3 2 - 4 + 1 -4(1 +) 2 a -(B - 2B 2 + B) = .

The other thrtc tsoLs are redundant by reasons of symmetry in 2. The boundary conditions at the end
walls are sausfied if

(a2-a 2(2B - 1 -a -aj) atan(a 1 qTJ) a-tan(a qTl)
S(al• a)(2 ' " --... -a", (2 11'

( a , - a a.a 1--,, a,(qT1 a 3tan(a 3qt))

4- (• r-a"(2i? -( - a2j-t2i ) a 3tan(a 3qfl)a ltan('a q) -- 0

ýin! two of the cocfficicnts c, are properly chosen. Equations (20) and (21) rcprescit a transccJdcdln-
tal r 10lincar svqem that provides an infinite set of solutions for ,hc four unknown quan-tics B and

ad, d ,,-,(C:i dicd Cigcniuliction~s (17).

Firidiig, tc e~gcnvdiu qualdrup"ls (B. a,. a-, a3) is a nontrivial task, and detai, will bc
dcscrnKd elsewhere. Tce rclatively simple form of eqs. 120) and (21), however, pcrmits application
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of analytical tools unavailable in the numerical approach. 7 Eouation (20) has four isolated roots with

real B. Only the double root B = I (with aI = 0) satisfies eq. (21) and provides an isolated eigen-

function. For sufficiently large Reynolds numbers (and q), it can be shown that one of the ai's, aI

say, must be located near the diagonal arg .a1) z - m'4. We observe that eq. (20) can be interpreted

as determining either the ai for given B or three solutions Bj , j = 1,2. 3 for any given a. Varying

a along the diagonal - )tr4 provides three branches as the locus of the B., two of them, B1 and B2,
originating at B = 1, the third, B 3. at B = 0, as shown in figure 1. A small correction to these

branches and the position of the eigenvalues along the branches is provided by eq. (21). The laiger

tne ReNyolds number, the denser is ,he spacing of the eigenvalues.

Given a triplet Ba,I we obtain for each 8. the associated ,,alues of aji , i = 1,2,3, vdicre the

aj1 are located in a small neighborhood near the diagonal - ir/4. Figure 2 shows the curves gen-

erate,. by the first 50 eigenvalues for Re = 20, il = 4.368, '" = 0.16667, and 0 = 20. Full, dashed,

and dottd lines indicate the three families associated with the B, in figure 1. At higher Reynolds

numbers, the lines with arg(a;) z- vt4 are hardly distinguishable. Since each quadrupel

(B ; all, a,2, a, 3) defines one cigenfunction, these functions are ordered into triplets with approxi-

mately the same aj. The triplets can be ordered by increasing I a I I. We finally obiaiii Lhe ordcrud

eigenvalue quadrupels (8,,,,; aflj a,12, a,1 3), n = 1,2, •- , with a, Ii < I a,+i)1.

The complex cigenfunctions are oscillatory, and the number of zeroes of real and imaginary part

increases with r.. Analysis of this oscillatory behavior suggests accounting for the isolated eigen-
function with B = 1. At larger Reynolds numbers, the eigenfunctions exhibit a pronounced
boundary-layer character near z = TI.

6. Numerical Solution for the Axial Velocity

With given eigenvalues and eigenfunctions, the axial velocity can be represented in the form

N 3

w(•,;.) = Y A,j Fnj()Gj(P ), (22)

where the yet unknown constants are determined by the boundary conditions (15) at the side wall,
; = q. As HaLl, Sedney, and Gerber, 7 we find these constants numerically by using a collocation
method or the method of least squares and calculate the associated yaw moment M,. The conver-

gence of the expansion series in terms of M, is shown in figure 3. A relatively large number of

eigenfunctions is necessary to obtain the accurate result within an error of a few percent. The accu-
racy improves rapidly and systematically as more cigenfunctions are taken into 1ccount.

The method is currently operational up to Re = 2000. We have calculated the eigenvalues for
Reynrolds numbers as high as Re = 106. The calculation of -tac cigcnfunctions and expansion
coel. .icnis, however, still suffers from problems with large numbers caused by tie exponential

bch:piiu. of trigonometric and Bcsscl functions of large complex arguments Work is conducted to
.c�r�un,',cri thcc prublcmns by pro,:ier scainog

7. SriTMmary

We have dcveloped a new anal'tical formulation to obtain the liquid moments in the linear
approximation by solving a sinrlc partial diffcrcntial equation for the axial velocity. This equation
can bex solvcd by s"ardard sp.cctral mcthoxs or by use of expansions in saud. cig,.cifnLuncions. Iii

.kp)eridix h X



contrast to earlier work,7 we obtain the eigenfunctions in closed form, and the eigenvalues art
governed by a closed-form characteristic equation. Our formulation reveals the structure of the
eigenvalue spectrum and permits direct calculation of the cigenvalues without costly lookup tables.
The computer timc Lor obtaining the spatial eigenfunc.ions is of the order of seconds and hence negli-
gible. The calculation of the expansion coefficients requires essentially the time for solving an alge-
braic system with 3N complex unknowns, where N depends on the desired accuracy and increases
with the Reynolds number. The computational efficiency of the spatial cigenfunction expansion is
crmparablc to the spectral Navier-Stokes solver of Herbert and Li., We expect higher efficiency
from solving for the axial velocity by standard spectral methods.
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